scholarly journals Conservation of the glycogen metabolism pathway underlines a pivotal function of storage polysaccharides in Chlamydiae

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthieu Colpaert ◽  
Derifa Kadouche ◽  
Mathieu Ducatez ◽  
Trestan Pillonel ◽  
Carole Kebbi-Beghdadi ◽  
...  

AbstractThe order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e. the GlgC-pathway with the notable exception of both Criblamydiaceae and Waddliaceae families. Through detailed genome analysis and biochemical investigations, we have shown that genome rearrangement events have resulted in a defective GlgC-pathway and more importantly we have evidenced a distinct trehalose-dependent GlgE-pathway in both Criblamydiaceae and Waddliaceae families. Altogether, this study strongly indicates that the glycogen metabolism is retained in all Chlamydiales without exception, highlighting the pivotal function of storage polysaccharides, which has been underestimated to date. We propose that glycogen degradation is a mandatory process for fueling essential metabolic pathways that ensure the survival and virulence of extracellular forms i.e. elementary bodies of Chlamydiales.

2020 ◽  
Author(s):  
Matthieu Colpaert ◽  
Derifa Kadouche ◽  
Mathieu Ducatez ◽  
Trestan Pillonel ◽  
Carole Kebbi-Beghdadi ◽  
...  

AbstractAll obligate intracellular pathogens or symbionts of eukaryotes lack glycogen metabolism. Most members of the Chlamydiales order are exceptions to this rule as they contain the classical GlgA-GlgC-dependent pathway of glycogen metabolism that relies on the ADP-Glucose substrate. We surveyed the diversity of Chlamydiales and found glycogen metabolism to be universally present with the important exception of Criblamydiaceae and Waddliaceae families that had been previously reported to lack an active pathway. However, we now find elements of the more recently described GlgE maltose-1-P-dependent pathway in several protist-infecting Chlamydiales. In the case of Waddliaceae and Criblamydiaceae, the substitution of the classical pathway by this recently proposed GlgE pathway was essentially complete as evidenced by the loss of both GlgA and GlgC. Biochemical analysis of recombinant proteins expressed from Waddlia chondrophila and Estrella lausannensis established that both enzymes do polymerize glycogen from trehalose through the production of maltose-1-P by TreS-Mak and its incorporation into glycogen’s outer chains by GlgE. Unlike Mycobacteriaceae where GlgE-dependent polymerization is produced from both bacterial ADP-Glc and trehalose, glycogen synthesis seems to be entirely dependent on host supplied UDP-Glc and Glucose-6-P or on host supplied trehalose and maltooligosaccharides. These results are discussed in the light of a possible effector nature of these enzymes, of the chlamydial host specificity and of a possible function of glycogen in extracellular survival and infectivity of the chlamydial elementary bodies. They underline that contrarily to all other obligate intracellular bacteria, glycogen metabolism is indeed central to chlamydial replication and maintenance.


2020 ◽  
Author(s):  
Sébastien Triboulet ◽  
Maimouna D. N’Gadjaga ◽  
Béatrice Niragire ◽  
Stephan Köstlbacher ◽  
Matthias Horn ◽  
...  

ABSTRACTThe obligate intracellular bacteria Chlamydia trachomatis store glycogen in the lumen of the vacuoles in which they grow. Glycogen catabolism generates glucose-1-phosphate (Glc1P), while the bacteria are capable of taking up only glucose-6-phosphate (Glc6P). We tested whether the conversion of Glc1P into Glc6P could be catalyzed by a phosphoglucomutase (PGM) of host or bacterial origin. We found no evidence for the presence of the host enzyme in the vacuole. In C. trachomatis, two proteins are potential PGMs. By reconstituting the reaction, and by complementing PGM deficient fibroblasts, we demonstrated that only CT295 displayed robust PGM activity. Furthermore, we showed that glycogen accumulation by a subset of Chlamydia species correlated with the presence of a type three secretion (T3S) signal in their PGM. In conclusion, we established that the conversion of Glc1P into Glc6P was accomplished by a bacterial PGM, through the acquisition of a T3S signal in a “housekeeping” gene.


2004 ◽  
Vol 68 (4) ◽  
pp. 745-770 ◽  
Author(s):  
Evelyn Zientz ◽  
Thomas Dandekar ◽  
Roy Gross

SUMMARY Mutualistic associations of obligate intracellular bacteria and insects have attracted much interest in the past few years due to the evolutionary consequences for their genome structure. However, much less attention has been paid to the metabolic ramifications for these endosymbiotic microorganisms, which have to compete with but also to adapt to another metabolism—that of the host cell. This review attempts to provide insights into the complex physiological interactions and the evolution of metabolic pathways of several mutualistic bacteria of aphids, ants, and tsetse flies and their insect hosts.


2021 ◽  
Author(s):  
Arkaprabha Banerjee ◽  
David E Nelson

Abstract Multiple species of obligate intracellular bacteria in the genus Chlamydia are important veterinary and/or human pathogens. These pathogens all share similar biphasic developmental cycles and transition between intracellular vegetative reticulate bodies and infectious elementary forms, but vary substantially in their host preferences and pathogenic potential. A lack of tools for genetic engineering of these organisms has long been an impediment to the study of their biology and pathogenesis. However, the refinement of approaches developed in C. trachomatis over the last ten years, and adaptation of some of these approaches to other Chlamydia spp. in just the last few years, has opened exciting new possibilities for studying this ubiquitous group of important pathogens.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Nicholas A. Wood ◽  
Krystal Y. Chung ◽  
Amanda M. Blocker ◽  
Nathalia Rodrigues de Almeida ◽  
Martin Conda-Sheridan ◽  
...  

ABSTRACTMembers ofChlamydiaare obligate intracellular bacteria that differentiate between two distinct functional and morphological forms during their developmental cycle, elementary bodies (EBs) and reticulate bodies (RBs). EBs are nondividing small electron-dense forms that infect host cells. RBs are larger noninfectious replicative forms that develop within a membrane-bound vesicle, termed an inclusion. Given the unique properties of each developmental form of this bacterium, we hypothesized that the Clp protease system plays an integral role in proteomic turnover by degrading specific proteins from one developmental form or the other.Chlamydiaspp. have five uncharacterizedclpgenes,clpX,clpC, twoclpPparalogs, andclpB. In other bacteria, ClpC and ClpX are ATPases that unfold and feed proteins into the ClpP protease to be degraded, and ClpB is a deaggregase. Here, we focused on characterizing the ClpP paralogs. Transcriptional analyses and immunoblotting determined that these genes are expressed midcycle. Bioinformatic analyses of these proteins identified key residues important for activity. Overexpression of inactiveclpPmutants inChlamydiaspp. suggested independent function of each ClpP paralog. To further probe these differences, we determined interactions between the ClpP proteins using bacterial two-hybrid assays and native gel analysis of recombinant proteins. Homotypic interactions of the ClpP proteins, but not heterotypic interactions between the ClpP paralogs, were detected. Interestingly, protease activity of ClpP2, but not ClpP1, was detectedin vitro. This activity was stimulated by antibiotics known to activate ClpP, which also blocked chlamydial growth. Our data suggest the chlamydial ClpP paralogs likely serve distinct and critical roles in this important pathogen.IMPORTANCEChlamydia trachomatisis the leading cause of preventable infectious blindness and of bacterial sexually transmitted infections worldwide. Chlamydiae are developmentally regulated obligate intracellular pathogens that alternate between two functional and morphologic forms, with distinct repertoires of proteins. We hypothesize that protein degradation is a critical aspect to the developmental cycle. A key system involved in protein turnover in bacteria is the Clp protease system. Here, we characterized the two chlamydial ClpP paralogs by examining their expression inChlamydiaspp., their ability to oligomerize, and their proteolytic activity. This work will help understand the evolutionarily diverse Clp proteases in the context of intracellular organisms, which may aid in the study of other clinically relevant intracellular bacteria.


2019 ◽  
Author(s):  
Vida Ahyong ◽  
Charles A. Berdan ◽  
Daniel K. Nomura ◽  
Matthew D. Welch

AbstractGram-negative bacteria in the order Rickettsiales are obligate intracellular parasites that cause human diseases such typhus and spotted fever. They have evolved a dependence on essential nutrients and metabolites from the host cell as a consequence of extensive genome streamlining. However, it remains largely unknown which nutrients they require and whether their metabolic dependency can be exploited therapeutically. Here, we describe a genetic rewiring of bacterial isoprenoid biosynthetic pathways in the Rickettsiales that has resulted from reductive genome evolution. We further investigated whether the spotted fever groupRickettsiaspeciesRickettsia parkeriscavenges isoprenoid precursors directly from the host. Using targeted mass spectrometry in uninfected and infected cells, we found decreases in host isoprenoid products and concomitant increases in bacterial isoprenoid metabolites. Additionally, we report that bacterial growth is prohibited by inhibition of the host isoprenoid pathway with the statins class of drugs. We show that growth inhibition correlates with changes in bacterial size and shape that mimic those caused by antibiotics that inhibit peptidoglycan biosynthesis, suggesting statins inhibit cell wall synthesis. Altogether, our results describe an Achilles’ heel of obligate intracellular pathogens that can be exploited with host-targeted therapeutics that interfere with metabolic pathways required for bacterial growth.ImportanceObligate intracellular parasites, which include viruses as well as certain bacteria and eukaryotes, extract essential nutrients and metabolites from their host cell. As a result, these pathogens have often lost essential biosynthetic pathways and are metabolically dependent on the host. In this study, we describe a metabolic dependency of the bacterial pathogenRickettsia parkerion host isoprenoid molecules that are used in the biosynthesis of downstream products including cholesterol, steroid hormones, and heme. Bacteria make products from isoprenoids such as an essential lipid carrier for making the bacterial cell wall. We show that bacterial metabolic dependency can represent an Achilles’ heel, and that inhibiting host isoprenoid biosynthesis with the FDA-approved statin class of drugs inhibits bacterial growth by interfering with the integrity of the cell wall. This work highlights a potential to treat infections by obligate intracellular pathogens through inhibition of host biosynthetic pathways that are susceptible to parasitism.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 614
Author(s):  
Paige E. Allen ◽  
Juan J. Martinez

Lipids are a broad group of molecules required for cell maintenance and homeostasis. Various intracellular pathogens have developed mechanisms of modulating and sequestering host lipid processes for a large array of functions for both bacterial and host cell survival. Among the host cell lipid functions that intracellular bacteria exploit for infection are the modulation of host plasma membrane microdomains (lipid rafts) required for efficient bacterial entry; the recruitment of specific lipids for membrane integrity of intracellular vacuoles; and the utilization of host lipid droplets for the regulation of immune responses and for energy production through fatty acid β-oxidation and oxidative phosphorylation. The majority of published studies on the utilization of these host lipid pathways during infection have focused on intracellular bacterial pathogens that reside within a vacuole during infection and, thus, have vastly different requirements for host lipid metabolites when compared to those intracellular pathogens that are released into the host cytosol upon infection. Here we summarize the mechanisms by which intracellular bacteria sequester host lipid species and compare the modulation of host lipid pathways and metabolites during host cell infection by intracellular pathogens residing in either a vacuole or within the cytosol of infected mammalian cells. This review will also highlight common and unique host pathways necessary for intracellular bacterial growth that could potentially be targeted for therapeutic intervention.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai Kamm ◽  
Hans-Jürgen Osigus ◽  
Peter F. Stadler ◽  
Rob DeSalle ◽  
Bernd Schierwater

AbstractSymbiotic relationships between eukaryotic hosts and bacteria range from parasitism to mutualism and may deeply influence both partners’ fitness. The presence of intracellular bacteria in the metazoan phylum Placozoa has been reported several times, but without any knowledge about the nature of this relationship and possible implications for the placozoan holobiont. This information may be of crucial significance since little is known about placozoan ecology and how different species adapt to different environmental conditions, despite being almost invariable at the morphological level. We here report on the novel genome of the rickettsial endosymbiont of Trichoplax sp. H2 (strain “Panama”). The combination of eliminated and retained metabolic pathways of the bacterium indicates a potential for a mutualistic as well as for a parasitic relationship, whose outcome could depend on the environmental context. In particular we show that the endosymbiont is dependent on the host for growth and reproduction and that the latter could benefit from a supply with essential amino acids and important cofactors. These findings call for further studies to clarify the actual benefit for the placozoan host and to investigate a possible role of the endosymbiont for ecological separation between placozoan species.


Author(s):  
Philippa C. Matthews

This chapter consists of short notes, diagrams, and tables to summarize infections caused by obligate intracellular bacteria. The chapter begins with a classification system to divide these organisms into Rickettsia, Anaplasma, Chlamydia, Coxiella, and Bartonella species. Separate sections then follow on the infections of most clinical significance for the tropics and subtropics, including the typhus group (caused by rickettsial infection) and Q fever. For ease of reference, each topic is broken down into sections, including classification, epidemiology, microbiology, pathophysiology, clinical syndromes, diagnosis, treatment, and prevention.


Sign in / Sign up

Export Citation Format

Share Document