scholarly journals Wnt signaling in lung development, regeneration, and disease progression

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Cody J. Aros ◽  
Carla J. Pantoja ◽  
Brigitte N. Gomperts

AbstractThe respiratory tract is a vital, intricate system for several important biological processes including mucociliary clearance, airway conductance, and gas exchange. The Wnt signaling pathway plays several crucial and indispensable roles across lung biology in multiple contexts. This review highlights the progress made in characterizing the role of Wnt signaling across several disciplines in lung biology, including development, homeostasis, regeneration following injury, in vitro directed differentiation efforts, and disease progression. We further note uncharted directions in the field that may illuminate important biology. The discoveries made collectively advance our understanding of Wnt signaling in lung biology and have the potential to inform therapeutic advancements for lung diseases.

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Stefan Teufel ◽  
Petra Köckemann ◽  
Christine Fabritius ◽  
Lena I. Wolff ◽  
Jessica Bertrand ◽  
...  

AbstractAgonists and antagonists of the canonical Wnt signaling pathway are modulators of pathological aspects of rheumatoid arthritis (RA). Their activity is primarily modifying bone loss and bone formation, as shown in animal models of RA. More recently, modulation of Wnt signaling by the antagonist Sclerostin has also been shown to influence soft-tissue-associated inflammatory aspects of the disease pointing towards a role of Wnt signaling in soft-tissue inflammation as well. Yet, nothing is known experimentally about the role of Wnt ligands in RA. Here we provide evidence that altering Wnt signaling at the level of a ligand affects all aspects of the rheumatoid arthritic disease. WNT9a levels are increased in the pannus tissue of RA patients, and stimulation of synovial fibroblasts (SFB) with tumor necrosis factor (TNF) leads to increased transcription of Wnt9a. Loss of Wnt9a in a chronic TNF-dependent RA mouse model results in an aggravation of disease progression with enhanced pannus formation and joint destruction. Yet, loss of its activity in the acute K/BxN serum-transfer induced arthritis (STIA) mouse model, which is independent of TNF signaling, has no effect on disease severity or progression. Thus, suggesting a specific role for WNT9a in TNF-triggered RA. In synovial fibroblasts, WNT9a can activate the canonical Wnt/β-catenin pathway, but it can also activate P38- and downregulate NFκB signaling. Based on in vitro data, we propose that loss of Wnt9a creates a slight proinflammatory and procatabolic environment that boosts the TNF-mediated inflammatory response.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 706
Author(s):  
Yue Liao ◽  
Susann Badmann ◽  
Till Kaltofen ◽  
Doris Mayr ◽  
Elisa Schmoeckel ◽  
...  

Aberrantly activated Wnt/β-catenin signaling pathway, as well as platelet-activating factor (PAF), contribute to cancer progression and metastasis of many cancer entities. Nonetheless, the role of the degradation enzyme named platelet-activating factor acetylhydrolase (PLA2G7/PAF-AH) in ovarian cancer etiology is still unclear. This study investigated the functional impact of platelet-activating factor acetylhydrolase on BRCA1 mutant ovarian cancer biology and its crosstalk with the Wnt signaling pathway. PAF-AH, pGSK3β, and β-catenin expressions were analyzed in 156 ovarian cancer specimens by immunohistochemistry. PAF-AH expression was investigated in ovarian cancer tissue, serum of BRCA1-mutated patients, and in vitro in four ovarian cancer cell lines. Functional assays were performed after PLA2G7 silencing. The association of PAF-AH and β-catenin was examined by immunocytochemistry. In an established ovarian carcinoma collective, we identified PAF-AH as an independent positive prognostic factor for overall survival (median 59.9 vs. 27.4 months; p = 0.016). PAF-AH correlated strongly with the Wnt signaling proteins pGSK3β (Y216; nuclear: cc = 0.494, p < 0.001; cytoplasmic: cc = 0.488, p < 0.001) and β-catenin (nuclear: cc = 0.267, p = 0.001; cytoplasmic: cc = 0.291, p < 0.001). In particular, high levels of PAF-AH were found in tumor tissue and in the serum of BRCA1 mutation carriers. By in vitro expression analysis, a relevant gene and protein expression of PLA2G7/PAF-AH was detected exclusively in the BRCA1-negative ovarian cancer cell line UWB1.289 (p < 0.05). Functional assays showed enhanced viability, proliferation, and motility of UWB1.289 cells when PLA2G7/PAF-AH was downregulated, which underlines its protective character. Interestingly, by siRNA knockdown of PLA2G7/PAF-AH, the immunocytochemistry staining pattern of β-catenin changed from a predominantly membranous expression to a nuclear one, suggesting a negative regulatory role of PAF-AH on the Wnt/β-catenin pathway. Our data provide evidence that PAF-AH is a positive prognostic factor with functional impact, which seems particularly relevant in BRCA1 mutant ovarian cancer. For the first time, we show that its protective character may be mediated by a negative regulation of the Wnt/β-catenin pathway. Further studies need to specify this effect. Potential use of PAF-AH as a biomarker for predicting the disease risk of BRCA1 mutation carriers and for the prognosis of patients with BRCA1-negative ovarian cancer should be explored.


PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0188805 ◽  
Author(s):  
Reddy Sailaja Mundre ◽  
Pavani Koka ◽  
Prakash Dhanaraj ◽  
Nitin Khatri ◽  
Sanjana Vig ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3959
Author(s):  
Oluwaseun Adebayo Bamodu ◽  
Yuan-Hung Wang ◽  
Chen-Hsun Ho ◽  
Su-Wei Hu ◽  
Chia-Da Lin ◽  
...  

Background: prostate cancer (PCa) is a principal cause of cancer-related morbidity and mortality. Castration resistance and metastasis are clinical challenges and continue to impede therapeutic success, despite diagnostic and therapeutic advances. There are reports of the oncogenic activity of genetic suppressor element (GSE)1 in breast and gastric cancers; however, its role in therapy resistance, metastasis, and susceptibility to disease recurrence in PCa patients remains unclear. Objective: this study investigated the role of aberrantly expressed GSE1 in the metastasis, therapy resistance, relapse, and poor prognosis of advanced PCa. Methods: we used a large cohort of multi-omics data and in vitro, ex vivo, and in vivo assays to investigate the potential effect of altered GSE1 expression on advanced/castration-resistant PCa (CRPC) treatment responses, disease progression, and prognosis. Results: using a multi-cohort approach, we showed that GSE1 is upregulated in PCa, while tumor-associated calcium signal transducer 2 (TACSTD2) is downregulated. Moreover, the direct, but inverse, correlation interaction between GSE1 and TACSTD2 drives metastatic disease, castration resistance, and disease progression and modulates the clinical and immune statuses of patients with PCa. Patients with GSE1highTACSTD2low expression are more prone to recurrence and disease-specific death than their GSE1lowTACSTD2high counterparts. Interestingly, we found that the GSE1–TACSTD2 expression profile is associated with the therapy responses and clinical outcomes in patients with PCa, especially those with metastatic/recurrent disease. Furthermore, we demonstrate that the shRNA-mediated targeting of GSE1 (shGSE1) significantly inhibits cell proliferation and attenuates cell migration and tumorsphere formation in metastatic PC3 and DU145 cell lines, with an associated suppression of VIM, SNAI2, and BCL2 and the concomitant upregulation of TACSTD2 and BAX. Moreover, shGSE1 enhances sensitivity to the antiandrogens abiraterone and enzalutamide in vitro and in vivo. Conclusion: these data provide preclinical evidence of the oncogenic role of dysregulated GSE1–TACSTD2 signaling and show that the molecular or pharmacological targeting of GSE1 is a workable therapeutic strategy for inhibiting androgen-driven oncogenic signals, re-sensitizing CRPC to treatment, and repressing the metastatic/recurrent phenotypes of patients with PCa.


Author(s):  
Samoylova A.V. ◽  
Snimshchikova I.A. ◽  
Plotnikova M.O. ◽  
Yakushkina N.Y.

Alopecia is a common pathology among the active population, which leads not only to cosmetic defects, but also to the development of somatic diseases against the background of traumatic effects and chronic stress. The pathogenetic mechanisms of hair follicle formation are complex and diverse, since numerous factors, including the components of the Wnt signaling pathway, have an effect on its morphogenesis, the study of which is the subject of this study. The search for possible early markers of the development of alopecia led to interest in the study of the main morphogenic proteins of WNT - the signaling pathway (one of the intracellular signaling pathways, which control the development of blood vessels, as well as the growth and division of hair follicle cells) sclerostin and β-catenin among patients with androgenic and alopecia areata. The article presents data on the quantitative content of β-catenin and sclerostin in the blood serum in patients with androgenic and alopecia areata. Their possible pathways of complex interaction and influence on the morphogenesis of the hair follicle and the activity of the Wnt-signaling pathway have been analyzed, and the relationship between changes in the level of morphogenic proteins of the WNT-signaling pathway with sex and the course of the disease has been described. Establishment of the prognostic role of morphogenic proteins of the WNT signaling pathway in androgenic and alopecia areata will allow not only identify the personal risk of disease progression and to determine approaches to targeted therapy, but to develop and introduce updated diagnostic screening into dermatological practice.


2018 ◽  
Vol 48 (2) ◽  
pp. 419-432 ◽  
Author(s):  
Yuanyuan Zhao ◽  
Leilei Tao ◽  
Jun Yi ◽  
Haizhu Song ◽  
Longbang Chen

Radioresistance is a major obstacle in radiotherapy for cancer, and strategies are needed to overcome this problem. Currently, radiotherapy combined with targeted therapy such as inhibitors of phosphoinosotide 3-kinase/Akt and epidermal growth factor receptor signaling have become the focus of studies on radiosensitization. Apart from these two signaling pathways, which promote radioresistance, deregulation of Wnt signaling is also associated with the radioresistance of multiple cancers. Wnts, as important messengers in the tumor microenvironment, are involved in cancer progression mainly via canonical Wnt signaling. Their role in promoting DNA damage repair and inhibiting apoptosis facilitates cancer resistance to radiation. Thus, it seems reasonable to target Wnt signaling as a method for overcoming radioresistance. Many small-molecule inhibitors that target the Wnt signaling pathway have been identified and shown to promote radiosensitization. Therefore, a Wnt signaling inhibitor may help to overcome radioresistance in cancer therapy.


Author(s):  
Antonella Minutolo ◽  
Vita Petrone ◽  
Marialaura Fanelli ◽  
Marco Iannetta ◽  
Martina Giudice ◽  
...  

Background: CD169 has been found overexpressed in the blood of COVID-19 patients and identified as a biomarker in the early disease. We have analysed CD169 in blood cells of COVID-19 patients to assess its role as predictive marker of the disease. Methods : The ratio of the CD169 Median median Fluorescence fluorescence Intensity intensity of CD169 between monocytes and lymphocytes (CD169 RMFI ) was analysed by flow cytometry in blood samples of COVID-19 patients (COV) and healthy donors (HD ) and correlated with immunophenotyping, inflammatory markers, cytokines mRNA expression, pulmonary involvement and disease progression. Results: CD169 RMFI increased in COV but not in HD. CD169 RMFI correlated with T-cell differentiation and exhaustion markers as well as with B cells maturation and differentiation. In vitro stimulation of PBMCs of HD with SARS-CoV-2 Spike spike protein induced CD169 RMFI together with IL-6 and IL-10 gene expression. Likewise, CD169 RMFI correlated with blood cytokine mRNA levels, inflammatory markers, and pneumonia severity in patients which that had not received any treatment at sampling. Notably, in untreated patients, CD169 RMFI reflected the respiratory outcome during hospitalization. Conclusion : Considering the immunological role of CD169 and its involvement during the infection and the progression of COVID-19, it could be considered as an early biomarker to evaluate disease progression and clinical outcome.


Sign in / Sign up

Export Citation Format

Share Document