scholarly journals The lexicon of antimicrobial peptides: a complete set of arginine and tryptophan sequences

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sam Clark ◽  
Thomas A. Jowitt ◽  
Lynda K. Harris ◽  
Christopher G. Knight ◽  
Curtis B. Dobson

AbstractOur understanding of the activity of cationic antimicrobial peptides (AMPs) has focused on well-characterized natural sequences, or limited sets of synthetic peptides designed de novo. We have undertaken a comprehensive investigation of the underlying primary structural features that give rise to the development of activity in AMPs. We consider a complete set of all possible peptides, up to 7 residues long, composed of positively charged arginine (R) and / or hydrophobic tryptophan (W), two features most commonly associated with activity. We found the shortest active peptides were 4 or 5 residues in length, and the overall landscapes of activity against gram-positive and gram-negative bacteria and a yeast were positively correlated. For all three organisms we found a single activity peak corresponding to sequences with around 40% R; the presence of adjacent W duplets and triplets also conferred greater activity. The mechanistic basis of these activities comprises a combination of lipid binding, particularly to negatively charged membranes, and additionally peptide aggregation, a mode of action previously uninvestigated for such peptides. The maximum specific antimicrobial activity appeared to occur in peptides of around 10 residues, suggesting ‘diminishing returns’ for developing larger peptides, when activity is considered per residue of peptide.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mant CT ◽  
Jiang Z ◽  
Gera L ◽  
Davis T ◽  
Hodges RS

We designed de novo and synthesized two series of five 26-residue amphipathic α-helical cationic antimicrobial peptides (AMPs) with five or six positively charged residues (D-Lys, L-Dab (2,4-diaminobutyric acid) or L-Dap (2,3-diaminopropionic acid)) on the polar face where all other residues are in the D-conformation. Hemolytic activity against human red blood cells was determined using the most stringent conditions for the hemolysis assay, 18h at 37°C, 1% human erythrocytes and peptide concentrations up to 1000 μg/mL (~380 μM). Antimicrobial activity was determined against 7 Acinetobacter baumannii strains, resistant to polymyxin B and colistin (antibiotics of last resort) to show the effect of positively charged residues in two different locations on the polar face (positions 3, 7, 11, 18, 22 and 26 versus positions 3, 7, 14, 15, 22 and 26). All 10 peptides had two D-Lys residues in the center of the non-polar face as “specificity determinants” at positions 13 and 16 which provide specificity for prokaryotic cells over eukaryotic cells. Specificity determinants also maintain excellent antimicrobial activity in the presence of human sera. This study shows that the location and type of positively charged residue (Dab and Dap) on the polar face are critical to obtain the best therapeutic indices.


Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 776
Author(s):  
Joon Ha Lee ◽  
Hoyong Chung ◽  
Yong Pyo Shin ◽  
Mi-Ae Kim ◽  
Sathishkumar Natarajan ◽  
...  

An insect’s innate immune system is the front line of defense against many invading microorganisms. One of the important components of this defense system is antimicrobial peptides (AMPs). Papiliocin is a well-studied antimicrobial peptide (AMP) isolated from the swallowtail butterfly, Papilio xuthus, and it was previously reported to be effective against Gram-positive bacteria, Gram-negative bacteria, and fungi, particularly in drug resistant Gram-negative bacteria. Hence, we aimed to identify novel AMPs from Papilio xuthus using its transcriptome. We immunized the swallowtail butterfly with Escherichia coli, Staphylococcus aureus, Candida albicans, and the total RNA was isolated. De novo transcriptome assembly and functional annotations were conducted, and AMPs were predicted using an in-silico pipeline. The obtained 344,804,442 raw reads were then pre-processed to retrieve 312,509,806 (90.6%) total clean reads. A total of 38,272 unigenes were assembled with the average length of 1010 bp. Differential gene expression analysis identified 584 and 1409 upregulated and downregulated genes, respectively. The physicochemical, aggregation, and allergen propensity were used as filtration criteria. A total of 248 peptides were predicted using our in-house pipeline and the known AMPs were removed, resulting in 193 novel peptides. Finally, seven peptides were tested in vitro and three peptides (Px 5, 6, and 7) showed stronger antimicrobial activity against Gram-negative bacteria and yeast. All the tested peptides were non-allergens. The identified novel AMPs may serve as potential candidates for future antimicrobial studies.


2021 ◽  
Vol 14 (5) ◽  
pp. 471
Author(s):  
Malak Pirtskhalava ◽  
Boris Vishnepolsky ◽  
Maya Grigolava ◽  
Grigol Managadze

Antimicrobial peptides (AMPs) are anti-infectives that have the potential to be used as a novel and untapped class of biotherapeutics. Modes of action of antimicrobial peptides include interaction with the cell envelope (cell wall, outer- and inner-membrane). A comprehensive understanding of the peculiarities of interaction of antimicrobial peptides with the cell envelope is necessary to perform a rational design of new biotherapeutics, against which working out resistance is hard for microbes. In order to enable de novo design with low cost and high throughput, in silico predictive models have to be invoked. To develop an efficient predictive model, a comprehensive understanding of the sequence-to-function relationship is required. This knowledge will allow us to encode amino acid sequences expressively and to adequately choose the accurate AMP classifier. A shared protective layer of microbial cells is the inner, plasmatic membrane. The interaction of AMP with a biological membrane (native and/or artificial) has been comprehensively studied. We provide a review of mechanisms and results of interactions of AMP with the cell membrane, relying on the survey of physicochemical, aggregative, and structural features of AMPs. The potency and mechanism of AMP action are presented in terms of amino acid compositions and distributions of the polar and apolar residues along the chain, that is, in terms of the physicochemical features of peptides such as hydrophobicity, hydrophilicity, and amphiphilicity. The survey of current data highlights topics that should be taken into account to come up with a comprehensive explanation of the mechanisms of action of AMP and to uncover the physicochemical faces of peptides, essential to perform their function. Many different approaches have been used to classify AMPs, including machine learning. The survey of knowledge on sequences, structures, and modes of actions of AMP allows concluding that only possessing comprehensive information on physicochemical features of AMPs enables us to develop accurate classifiers and create effective methods of prediction. Consequently, this knowledge is necessary for the development of design tools for peptide-based antibiotics.


2003 ◽  
Vol 47 (8) ◽  
pp. 2464-2470 ◽  
Author(s):  
Aleksander Patrzykat ◽  
Jeffrey W. Gallant ◽  
Jung-Kil Seo ◽  
Jennifer Pytyck ◽  
Susan E. Douglas

ABSTRACT We report on the identification of active novel antimicrobials determined by screening both the genomic information and the mRNA transcripts from a number of different flatfish for sequences encoding antimicrobial peptides, predicting the sequences of active peptides from the genetic information, producing the predicted peptides chemically, and testing them for their activities. We amplified 35 sequences from various species of flatfish using primers whose sequences are based on conserved flanking regions of a known antimicrobial peptide from winter flounder, pleurocidin. We analyzed the sequences of the amplified products and predicted which sequences were likely to encode functional antimicrobial peptides on the basis of charge, hydrophobicity, relation to flanking sequences, and similarity to known active peptides. Twenty peptides were then produced synthetically and tested for their activities against gram-positive and gram-negative bacteria and the yeast Candida albicans. The most active peptide (with the carboxy-terminus amidated sequence GWRTLLKKAEVKTVGKLALKHYL, derived from American plaice) showed inhibitory activity over a concentration range of 1 to 8 μg/ml against a test panel of pathogens, including the intrinsically antibiotic-resistant organism Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and C. albicans. The methods described here will be useful for the identification of novel peptides with good antimicrobial activities.


2004 ◽  
Vol 48 (9) ◽  
pp. 3349-3357 ◽  
Author(s):  
V. Frecer ◽  
B. Ho ◽  
J. L. Ding

ABSTRACT Lipopolysaccharide (LPS), shed by gram-negative bacteria during infection and antimicrobial therapy, may lead to lethal endotoxic shock syndrome. A rational design strategy based on the presumed mechanism of antibacterial effect was adopted to design cationic antimicrobial peptides capable of binding to LPS through tandemly repeated sequences of alternating cationic and nonpolar residues. The peptides were designed to achieve enhanced antimicrobial potency due to initial bacterial membrane binding with a reduced risk of endotoxic shock. The peptides designed displayed binding affinities to LPS and lipid A (LA) in the low micromolar range and by molecular modeling were predicted to form amphipathic β-hairpin-like structures when they bind to LPS or LA. They also exhibited strong effects against gram-negative bacteria, with MICs in the nanomolar range, and low cytotoxic and hemolytic activities at concentrations significantly exceeding their MICs. Quantitative structure-activity relationship (QSAR) analysis of peptide sequences and their antimicrobial, cytotoxic, and hemolytic activities revealed that site-directed substitutions of residues in the hydrophobic face of the amphipathic peptides with less lipophilic residues selectively decrease the hemolytic effect without significantly affecting the antimicrobial or cytotoxic activity. On the other hand, the antimicrobial effect can be enhanced by substitutions in the polar face with more polar residues, which increase the amphipathicity of the peptide. On the basis of the QSARs, new analogs that have strong antimicrobial effects but that lack hemolytic activity can be proposed. The findings highlight the importance of peptide amphipathicity and allow a rational method that can be used to dissociate the antimicrobial and hemolytic effects of cationic peptides, which have potent antimicrobial properties, to be proposed.


2019 ◽  
Vol 12 (2) ◽  
pp. 82 ◽  
Author(s):  
Boris Vishnepolsky ◽  
George Zaalishvili ◽  
Margarita Karapetian ◽  
Tornike Nasrashvili ◽  
Nato Kuljanishvili ◽  
...  

Antimicrobial peptides (AMPs) have been identified as a potentially new class of antibiotics to combat bacterial resistance to conventional drugs. The design of de novo AMPs with high therapeutic indexes, low cost of synthesis, high resistance to proteases and high bioavailability remains a challenge. Such design requires computational modeling of antimicrobial properties. Currently, most computational methods cannot accurately calculate antimicrobial potency against particular strains of bacterial pathogens. We developed a tool for AMP prediction (Special Prediction (SP) tool) and made it available on our Web site (https://dbaasp.org/prediction). Based on this tool, a simple algorithm for the design of de novo AMPs (DSP) was created. We used DSP to design short peptides with high therapeutic indexes against gram-negative bacteria. The predicted peptides have been synthesized and tested in vitro against a panel of gram-negative bacteria, including drug resistant ones. Predicted activity against Escherichia coli ATCC 25922 was experimentally confirmed for 14 out of 15 peptides. Further improvements for designed peptides included the synthesis of D-enantiomers, which are traditionally used to increase resistance against proteases. One synthetic D-peptide (SP15D) possesses one of the lowest values of minimum inhibitory concentration (MIC) among all DBAASP database short peptides at the time of the submission of this article, while being highly stable against proteases and having a high therapeutic index. The mode of anti-bacterial action, assessed by fluorescence microscopy, shows that SP15D acts similarly to cell penetrating peptides. SP15D can be considered a promising candidate for the development of peptide antibiotics. We plan further exploratory studies with the SP tool, aiming at finding peptides which are active against other pathogenic organisms.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 212
Author(s):  
Francesco Buonocore ◽  
Anna Maria Fausto ◽  
Giulia Della Pelle ◽  
Tomislav Roncevic ◽  
Marco Gerdol ◽  
...  

Insects produce a large repertoire of antimicrobial peptides (AMPs) as the first line of defense against bacteria, viruses, fungi or parasites. These peptides are produced from a large precursor that contains a signal domain, which is cleaved in vivo to produce the mature protein with antimicrobial activity. At present, AMPs from insects include several families which can be classified as cecropins, ponericins, defensins, lebocins, drosocin, Metchnikowin, gloverins, diptericins and attacins according to their structure and/or function. This short review is focused on attacins, a class of glycine-rich peptides/proteins that have been first discovered in the cecropia moth (Hyalophora cecropia). They are a rather heterogeneous group of immunity-related proteins that exhibit an antimicrobial effect mainly against Gram-negative bacteria. Here, we discuss different attacin and attacin-like AMPs that have been discovered so far and analyze their structure and phylogeny. Special focus is given to the physiological importance and mechanism of action of attacins against microbial pathogens together with their potential pharmacological applications, emphasizing their roles as antimicrobials.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Junpeng Li ◽  
Shuping Hu ◽  
Wei Jian ◽  
Chengjian Xie ◽  
Xingyong Yang

AbstractAntimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


Sign in / Sign up

Export Citation Format

Share Document