scholarly journals Novel Antimicrobial Peptides Derived from Flatfish Genes

2003 ◽  
Vol 47 (8) ◽  
pp. 2464-2470 ◽  
Author(s):  
Aleksander Patrzykat ◽  
Jeffrey W. Gallant ◽  
Jung-Kil Seo ◽  
Jennifer Pytyck ◽  
Susan E. Douglas

ABSTRACT We report on the identification of active novel antimicrobials determined by screening both the genomic information and the mRNA transcripts from a number of different flatfish for sequences encoding antimicrobial peptides, predicting the sequences of active peptides from the genetic information, producing the predicted peptides chemically, and testing them for their activities. We amplified 35 sequences from various species of flatfish using primers whose sequences are based on conserved flanking regions of a known antimicrobial peptide from winter flounder, pleurocidin. We analyzed the sequences of the amplified products and predicted which sequences were likely to encode functional antimicrobial peptides on the basis of charge, hydrophobicity, relation to flanking sequences, and similarity to known active peptides. Twenty peptides were then produced synthetically and tested for their activities against gram-positive and gram-negative bacteria and the yeast Candida albicans. The most active peptide (with the carboxy-terminus amidated sequence GWRTLLKKAEVKTVGKLALKHYL, derived from American plaice) showed inhibitory activity over a concentration range of 1 to 8 μg/ml against a test panel of pathogens, including the intrinsically antibiotic-resistant organism Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and C. albicans. The methods described here will be useful for the identification of novel peptides with good antimicrobial activities.

2015 ◽  
Vol 70 (9-10) ◽  
pp. 251-256 ◽  
Author(s):  
Bao Juan Dong ◽  
Zhong Gen Zhan ◽  
Rong Quan Zheng ◽  
Wen Chen ◽  
Jin Jin Min

Abstract Antimicrobial peptides (AMPs) are small peptides found in many organisms defending themselves against pathogens. AMPs form the first line of host defence against pathogenic infections and are key components of the innate immune system of amphibians. In the current study, cDNAs of precursors of four novel antimicrobial peptides in the skin of Paa spinosa were cloned and sequenced using the 3′-RACE technique. Mature peptides, named spinosan A–D, encoded by the cDNAs were chemically synthesized and their chemical properties were predicted. The antimicrobial, antioxidative, cyotoxic and haemolytic activities of these four AMPs were determined. While the synthesised spinosans A–C exhibited no activity towards any of the bacterial strains tested, spinosan-D exhibited weak but broad-spectrum antimicrobial activities against Gram-positive and Gram-negative bacteria. All peptides were weakly haemolytic towards rabbit erythrocytes, had a strong antioxidative activity, and a low cytotoxic activity against HeLa cells. These findings provide helpful insights that may be useful in the future design of anti-infective peptide agents.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yue Sun ◽  
Dejing Shang

Antimicrobial peptides (AMPs) are usually small molecule peptides, which display broad-spectrum antimicrobial activity, high efficiency, and stability. For the multiple-antibiotic-resistant strains, AMPs play a significant role in the development of novel antibiotics because of their broad-spectrum antimicrobial activities and specific antimicrobial mechanism. Besides broad-spectrum antibacterial activity, AMPs also have anti-inflammatory activity. The neutralization of lipopolysaccharides (LPS) plays a key role in anti-inflammatory action of AMPs. On the one hand, AMPs can readily penetrate the cell wall barrier by neutralizing LPS to remove Gram-negative bacteria that can lead to infection. On the contrary, AMPs can also inhibit the production of biological inflammatory cytokines to reduce the inflammatory response through neutralizing circulating LPS. In addition, AMPs also modulate the host immune system by chemotaxis of leukocytes, to promote immune cell proliferation, epithelialization, and angiogenesis and thus play a protective role. This review summarizes some recent researches about anti-inflammatory AMPs, with a focus on the interaction of AMPs and LPS on the past decade.


2018 ◽  
Author(s):  
Guanhua Yuan ◽  
Wenlei Zhang ◽  
Xiaoying Xu ◽  
Wei Zhang ◽  
Yulin Cui ◽  
...  

AbstractThe complete sequence information of the alpha tubulin (tub) genes was obtained from both Haematococcus pluvialis NIES144 and SCCAP K0084., Putative transcriptional elements and polyadenylation signals were identified respectively in their 5’ and 3’ flanking regions. Three selection cassettes of tub/aadA, tub/hyr and tub/ble with 3 different antibiotic-resistant genes fused between the 5’ and 3’ flanking sequences of the tub gene were constructed and utilized for biolistic transformation of H.pluvialis. Antibiotic resistant transformants were obtained in the bombardments with the tub/aadA cassette in 2 strains. It was found that, the foreign tub/aadA DNA could be completely transferred and inherited in their genome through non-homologous recombination. Moreover, transcripts of the insert and spectinomycin resistance were identified. Transformation efficiencies up to 3×10-5 per μg DNA could be obtained in H.pluvialis NIES144 or SCCAP K0084 through utilization of a culture with a high percentage of flagellate cells and by optimizing bombarding protocol. The presented selection marker and optimized transforming procedures in this report should strengthen the platform technology for genetical manipulation and modification of H.pluvialis.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7377
Author(s):  
Huanhuan Li ◽  
Hongji Li ◽  
Shuo Chen ◽  
Wenhui Wu ◽  
Peng Sun

Terpene synthases are widely distributed in Actinobacteria. Genome sequencing of Streptomyces sp. NRRL S-4 uncovered a biosynthetic gene cluster (BGC) that putatively synthesizes pentalenolactone type terpenes. Guided by genomic information, the S-4 strain was chemically investigated, resulting in the isolation of two new sesquiterpenoids, 1-deoxy-8α-hydroxypentalenic acid (1) and 1-deoxy-9β-hydroxy-11-oxopentalenic acid (2), as shunt metabolites of the pentalenolactone (3) biosynthesis pathway. Their structures and absolute configurations were elucidated by analyses of HRESIMS and NMR spectroscopic data as well as time-dependent density functional theory/electronic circular dichroism (TDDFT/ECD) calculations. Compounds 1 and 2 exhibited moderate antimicrobial activities against Gram-positive and Gram-negative bacteria. These results confirmed that the pentalenolactone pathway was functional in this organism and will facilitate efforts for exploring Actinobacteria using further genome mining strategies.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Wan Roslina Wan Yusof ◽  
Fasihuddin Badruddin Ahmad ◽  
Mummedy Swamy

Mud crab from the genus Scylla is also known as mangrove crab, which has been well-accepted as a good source of protein. Recently, the antioxidant properties present in mud crabs have been reported to have a part in the protection of cells against free radicals. Meanwhile, numerous antimicrobial peptides from mud crabs have managed to be characterized through the display of antimicrobial activities against Gram-positive and Gram-negative bacteria. Hence, this paper is an effort to collect recent literatures on antioxidant and antimicrobial properties in every part of mud crabs which include muscle tissue, hemolymph, and crab shell. Moreover, the effort to understand the biological properties of mud crabs is important to enhance its production in aquaculture industry. Therefore, this review hoped to attract the attention of natural product researchers to focus on the potential therapeutic applications of mud crabs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sam Clark ◽  
Thomas A. Jowitt ◽  
Lynda K. Harris ◽  
Christopher G. Knight ◽  
Curtis B. Dobson

AbstractOur understanding of the activity of cationic antimicrobial peptides (AMPs) has focused on well-characterized natural sequences, or limited sets of synthetic peptides designed de novo. We have undertaken a comprehensive investigation of the underlying primary structural features that give rise to the development of activity in AMPs. We consider a complete set of all possible peptides, up to 7 residues long, composed of positively charged arginine (R) and / or hydrophobic tryptophan (W), two features most commonly associated with activity. We found the shortest active peptides were 4 or 5 residues in length, and the overall landscapes of activity against gram-positive and gram-negative bacteria and a yeast were positively correlated. For all three organisms we found a single activity peak corresponding to sequences with around 40% R; the presence of adjacent W duplets and triplets also conferred greater activity. The mechanistic basis of these activities comprises a combination of lipid binding, particularly to negatively charged membranes, and additionally peptide aggregation, a mode of action previously uninvestigated for such peptides. The maximum specific antimicrobial activity appeared to occur in peptides of around 10 residues, suggesting ‘diminishing returns’ for developing larger peptides, when activity is considered per residue of peptide.


2019 ◽  
Vol 70 (7) ◽  
pp. 2534-2537
Author(s):  
Gladiola Tantaru ◽  
Mihai Apostu ◽  
Antonia Poiata ◽  
Mihai Nichifor ◽  
Nela Bibire ◽  
...  

The paper presents the synthesis of a new complex combination of a Bis-Schiff base with Mn(II) ions with great potential for antimicrobial and anti-inflammatory activity. A new complex of the Salen-type ligand, 1-ethyl-salicylidene-bis-ethylene diamine was synthetized using Mn(II) ions. The chemical structure was confirmed through 1H-NMR and IR spectroscopy. The antimicrobial activities of the Bis-Schiff base and its complex were tested in comparison with Ampicillin, Chloramphenicol, Tetracycline, Ofloxacin and Nystatin. Those compounds were found to be active against Gram-positive or Gram-negative bacteria, and had an anti-inflammatory effect comparable to that of Indomethacin.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 212
Author(s):  
Francesco Buonocore ◽  
Anna Maria Fausto ◽  
Giulia Della Pelle ◽  
Tomislav Roncevic ◽  
Marco Gerdol ◽  
...  

Insects produce a large repertoire of antimicrobial peptides (AMPs) as the first line of defense against bacteria, viruses, fungi or parasites. These peptides are produced from a large precursor that contains a signal domain, which is cleaved in vivo to produce the mature protein with antimicrobial activity. At present, AMPs from insects include several families which can be classified as cecropins, ponericins, defensins, lebocins, drosocin, Metchnikowin, gloverins, diptericins and attacins according to their structure and/or function. This short review is focused on attacins, a class of glycine-rich peptides/proteins that have been first discovered in the cecropia moth (Hyalophora cecropia). They are a rather heterogeneous group of immunity-related proteins that exhibit an antimicrobial effect mainly against Gram-negative bacteria. Here, we discuss different attacin and attacin-like AMPs that have been discovered so far and analyze their structure and phylogeny. Special focus is given to the physiological importance and mechanism of action of attacins against microbial pathogens together with their potential pharmacological applications, emphasizing their roles as antimicrobials.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gamze Göger ◽  
Muhammed Allak ◽  
Ali Şen ◽  
Fatih Göger ◽  
Mehmet Tekin ◽  
...  

Abstract Phytochemical profiles of essential oil (EO), fatty acids, and n-hexane (CAH), diethyl ether (CAD), ethyl acetate (CAE) and methanol extracts (CAM) of Cota altissima L. J. Gay (syn. Anthemis altissima L.) were investigated as well as their antioxidant, anti-inflammatory, antidiabetic and antimicrobial activites. The essential oil was characterized by the content of acetophenone (35.8%) and β-caryophyllene (10.3%) by GC-MS/FID. Linoleic and oleic acid were found as main fatty acids. The major constituents of the extracts were found to be 5-caffeoylquinic acid, 3,5-dicaffeoylquinic acid, isorhamnetin glucoside, quercetin and quercetin glucoside by LC-MS/MS. Antioxidant activities of the extracts were determined by scavenging of DPPH and ABTS free radicals. Also, the inhibitory effects on lipoxygenase and α-glucosidase enzymes were determined. Antimicrobial activity was evaluated against Gram positive, Gram negative bacteria and yeast pathogens. CAM showed the highest antioxidant activity against DPPH and ABTS radicals with IC50 values of 126.60 and 144.40 μg/mL, respectively. In the anti-inflammatory activity, CAE demonstrated the highest antilipoxygenase activity with an IC50 value of 105.40 μg/mL, whereas, CAD showed the best inhibition of α-glucosidase with an IC50 value of 396.40 μg/mL in the antidiabetic activity. CAH was effective against Staphylococcus aureus at MIC = 312.5 µg/mL. This is the first report on antidiabetic, anti-inflammatory and antimicrobial activities of different extracts of C. altissima.


Sign in / Sign up

Export Citation Format

Share Document