scholarly journals Induction of Caspase-3-like activity in Rice following release of cytochrome-f from the chloroplast and subsequent interaction with the Ubiquitin-Proteasome System

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Hongjuan Wang ◽  
Xiaonan Zhu ◽  
Huan Li ◽  
Jing Cui ◽  
Cheng Liu ◽  
...  
2013 ◽  
Vol 114 (10) ◽  
pp. 1482-1489 ◽  
Author(s):  
Erin E. Talbert ◽  
Ashley J. Smuder ◽  
Kisuk Min ◽  
Oh Sung Kwon ◽  
Scott K. Powers

Prolonged skeletal muscle inactivity results in a rapid decrease in fiber size, primarily due to accelerated proteolysis. Although several proteases are known to contribute to disuse muscle atrophy, the ubiquitin proteasome system is often considered the most important proteolytic system during many conditions that promote muscle wasting. Emerging evidence suggests that calpain and caspase-3 may also play key roles in inactivity-induced atrophy of respiratory muscles, but it remains unknown if these proteases are essential for disuse atrophy in limb skeletal muscles. Therefore, we tested the hypothesis that activation of both calpain and caspase-3 is required for locomotor muscle atrophy induced by hindlimb immobilization. Seven days of immobilization (i.e., limb casting) promoted significant atrophy in type I muscle fibers of the rat soleus muscle. Independent pharmacological inhibition of calpain or caspase-3 prevented this casting-induced atrophy. Interestingly, inhibition of calpain activity also prevented caspase-3 activation, and, conversely, inhibition of caspase-3 prevented calpain activation. These findings indicate that a regulatory cross talk exists between these proteases and provide the first evidence that the activation of calpain and caspase-3 is required for inactivity-induced limb muscle atrophy.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
I-Cheng Chen ◽  
Kuo-Hsuan Chang ◽  
Yi-Jing Chen ◽  
Yi-Chun Chen ◽  
Guey-Jen Lee-Chen ◽  
...  

Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion within the ATXN3/MJD1 gene. The expanded CAG repeats encode a polyglutamine (polyQ) tract at the C-terminus of the ATXN3 protein. ATXN3 containing expanded polyQ forms aggregates, leading to subsequent cellular dysfunctions including an impaired ubiquitin-proteasome system (UPS). To investigate the pathogenesis of SCA3 and develop potential therapeutic strategies, we established induced pluripotent stem cell (iPSC) lines from SCA3 patients (SCA3-iPSC). Neurons derived from SCA3-iPSCs formed aggregates that are positive to the polyQ marker 1C2. Treatment with the proteasome inhibitor, MG132, on SCA3-iPSC-derived neurons downregulated proteasome activity, increased production of radical oxygen species (ROS), and upregulated the cleaved caspase 3 level and caspase 3 activity. This increased susceptibility to the proteasome inhibitor can be rescued by a Chinese herbal medicine (CHM) extract NH037 (from Pueraria lobata) and its constituent daidzein via upregulating proteasome activity and reducing protein ubiquitination, oxidative stress, cleaved caspase 3 level, and caspase 3 activity. Our results successfully recapitulate the key phenotypes of the neurons derived from SCA3 patients, as well as indicate the potential of NH037 and daidzein in the treatment for SCA3 patients.


2009 ◽  
Vol 30 (3) ◽  
pp. 566-575 ◽  
Author(s):  
Yong Zhang ◽  
Man Xiong ◽  
Ri-Qiang Yan ◽  
Feng-Yan Sun

Previous studies have demonstrated that ischemic stroke increases β-amyloid (Aβ) production by increasing β-secretase (BACE1) through activation of caspase-3, and stimulates generation of mutant ubiquitin (UBB+1) in rat brains. In this study, we examined whether caspase-3 activation participates in the regulation of UBB+1 generation and UBB+1-mediated BACE1 stability in ischemic injured brains. The results showed that UBB+1 and activated caspase-3-immunopositive-stained cells were time dependently increased in the ipsilateral striatum of rat brains after middle cerebral artery occlusion. UBB+1-immunopositive cells could be co-stained with caspase-3, Aβ (UBB+1–Aβ), and BACE1 (UBB+1–BACE1). BACE1 protein could also be pulled down by immunoprecipitation with UBB+1 antibody. Z-DEVD-FMK (DEVD), a caspase-3 inhibitor, significantly decreased the level of UBB+1 protein and the number of UBB+1–Aβ and UBB+1–BACE1 double-stained cells in the ischemic striatum, as well as the level of UBB+1/BACE1 protein complex. We conclude that activation of caspase-3 might be upstream of UBB+1 formation and that excessive UBB+1 could bind to BACE1 and increase the stability of BACE1, thereby increasing Aβ in ischemic injured brains. These results suggest new biological and pathological effects of caspases and regulation of the ubiquitin–proteasome system in the brain. Our results provide new therapeutic targets to prevent further neurodegeneration in patients after stroke.


2015 ◽  
Vol 290 (17) ◽  
pp. 11177-11187 ◽  
Author(s):  
Kleiton Augusto Santos Silva ◽  
Jiangling Dong ◽  
Yanjun Dong ◽  
Yanlan Dong ◽  
Nestor Schor ◽  
...  

2014 ◽  
Vol 111 (9) ◽  
pp. 1536-1548 ◽  
Author(s):  
Dong-Tao Wang ◽  
Lu Lu ◽  
Ying Shi ◽  
Zhen-Bo Geng ◽  
Yi Yin ◽  
...  

Ketoacids (KA) are known to improve muscle mass among patients with chronic kidney disease (CKD) on a low-protein diet (CKD-LPD), but the mechanism of its preventive effects on muscle atrophy still remains unclear. Since muscle atrophy in CKD may be attributable to the down-regulation of the Wnt7a/Akt/p70S6K pathway and the activation of the ubiquitin–proteasome system (UPS) and the apoptotic signalling pathway, a hypothesis can readily be drawn that KA supplementation improves muscle mass by up-regulating the Wnt7a/Akt/p70S6K pathway and counteracting the activation of the UPS and caspase-3-dependent apoptosis in the muscle of CKD-LPD rats. Rats with 5/6 nephrectomy were randomly divided into three groups, and fed with either 22 % protein (normal-protein diet; NPD), 6 % protein (LPD) or 5 % protein plus 1 % KA for 24 weeks. Sham-operated rats with NPD intake were used as the control. The results demonstrated that KA supplementation improved protein synthesis and increased related mediators such as Wnt7a, phosphorylated Akt and p70S6K in the muscle of CKD-LPD rats. It also inhibited protein degradation, withheld the increase in ubiquitin and its ligases MAFbx (muscle atrophy F-box) and MuRF1 (muscle ring finger-1) as well as attenuated proteasome activity in the muscle of CKD-LPD rats. Moreover, KA supplementation gave rise to a reduction in DNA fragment, cleaved caspase-3 and 14 kDa actin fragment via the down-regulation of the Bax:Bcl-2 ratio in the muscle of CKD-LPD rats. The beneficial effects unveiled herein further consolidate that KA may be a better therapeutic strategy for muscle atrophy in CKD-LPD.


2013 ◽  
Vol 305 (5) ◽  
pp. R464-R477 ◽  
Author(s):  
Scott K. Powers ◽  
Michael P. Wiggs ◽  
Kurt J. Sollanek ◽  
Ashley J. Smuder

Mechanical ventilation (MV) is used clinically to maintain gas exchange in patients that require assistance in maintaining adequate alveolar ventilation. Common indications for MV include respiratory failure, heart failure, drug overdose, and surgery. Although MV can be a life-saving intervention for patients suffering from respiratory failure, prolonged MV can promote diaphragmatic atrophy and contractile dysfunction, which is referred to as ventilator-induced diaphragm dysfunction (VIDD). This is significant because VIDD is thought to contribute to problems in weaning patients from the ventilator. Extended time on the ventilator increases health care costs and greatly increases patient morbidity and mortality. Research reveals that only 18–24 h of MV is sufficient to develop VIDD in both laboratory animals and humans. Studies using animal models reveal that MV-induced diaphragmatic atrophy occurs due to increased diaphragmatic protein breakdown and decreased protein synthesis. Recent investigations have identified calpain, caspase-3, autophagy, and the ubiquitin-proteasome system as key proteases that participate in MV-induced diaphragmatic proteolysis. The challenge for the future is to define the MV-induced signaling pathways that promote the loss of diaphragm protein and depress diaphragm contractility. Indeed, forthcoming studies that delineate the signaling mechanisms responsible for VIDD will provide the knowledge necessary for the development of a pharmacological approach that can prevent VIDD and reduce the incidence of weaning problems.


2005 ◽  
Vol 41 ◽  
pp. 173-186 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

The ubiquitin–proteasome system (UPS) is believed to degrade the major contractile skeletal muscle proteins and plays a major role in muscle wasting. Different and multiple events in the ubiquitination, deubiquitination and proteolytic machineries are responsible for the activation of the system and subsequent muscle wasting. However, other proteolytic enzymes act upstream (possibly m-calpain, cathepsin L, and/or caspase 3) and downstream (tripeptidyl-peptidase II and aminopeptidases) of the UPS, for the complete breakdown of the myofibrillar proteins into free amino acids. Recent studies have identified a few critical proteins that seem necessary for muscle wasting {i.e. the MAFbx (muscle atrophy F-box protein, also called atrogin-1) and MuRF-1 [muscle-specific RING (really interesting new gene) finger 1] ubiquitin–protein ligases}. The characterization of their signalling pathways is leading to new pharmacological approaches that can be useful to block or partially prevent muscle wasting in human patients.


2005 ◽  
Vol 41 (1) ◽  
pp. 173 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document