scholarly journals CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hua Zhong ◽  
Yiyun Chen ◽  
Yumei Li ◽  
Rui Chen ◽  
Graeme Mardon

Abstract The era of genomics has demanded the development of more efficient and timesaving approaches to validate gene function in disease. Here, we utilized the CRISPR-Cas9 system to generate Kcnj13 mutant mice by zygote injection to verify the pathogenic role of human KCNJ13, mutations of which are thought to cause Leber congenital amaurosis (LCA), an early-onset form of blindness. We found that complete loss of Kcnj13 is likely postnatal lethal. Among surviving F0-generation mice examined, 80% show mosaic KCNJ13 expression in the retinal pigment epithelium (RPE). Mosaic expression correlates with decreased response to light and photoreceptor degeneration, indicating that Kcnj13 mutant mice mimic human KCNJ13-related LCA disease. Importantly, mosaic animals enable us to directly compare Kcnj13 mutant and wild-type RPE cells in the same eye. We found that RPE cells lacking KCNJ13 protein still survive but overlying photoreceptors exhibit cell degeneration. At the same time, wild-type RPE cells can rescue neighboring photoreceptor cells that overlie mutant RPE cells. These results suggest that KCNJ13 expression is required for RPE cells to maintain photoreceptor survival. Moreover, we show that CRISPR-Cas9 engineered mosaicism can be used to rapidly test candidate gene function in vivo.

2017 ◽  
Vol 117 (04) ◽  
pp. 750-757
Author(s):  
Xin Jia ◽  
Chen Zhao ◽  
Qishan Chen ◽  
Yuxiang Du ◽  
Lijuan Huang ◽  
...  

SummaryJunctional adhesion molecule-C (JAM-C) has been shown to play critical roles during development and in immune responses. However, its role in adult eyes under oxidative stress remains poorly understood. Here, we report that JAM-C is abundantly expressed in adult mouse retinae and choroids in vivo and in cultured retinal pigment epithelium (RPE) and photoreceptor cells in vitro. Importantly, both JAM-C expression and its membrane localisation are downregulated by H2O2-induced oxidative stress. Under H2O2-induced oxidative stress, JAM-C is critically required for the survival of human RPE cells. Indeed, loss of JAM-C by siRNA knockdown decreased RPE cell survival. Mechanistically, we show that JAM-C is required to maintain VEGFR2 expression in RPE cells, and VEGFR2 plays an important role in keeping the RPE cells viable since overexpression of VEGFR2 partially restored impaired RPE survival caused by JAM-C knockdown and increased RPE survival. We further show that JAM-C regulates VEGFR2 expression and, in turn, modulates p38 phosphorylation. Together, our data demonstrate that JAM-C plays an important role in maintaining VEGR2 expression to promote RPE cell survival under oxidative stress. Given the vital importance of RPE in the eye, approaches that can modulate JAM-C expression may have therapeutic values in treating diseases with impaired RPE survival.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1927
Author(s):  
Yingyu Mao ◽  
Silvia C. Finnemann

The diurnal phagocytosis of spent photoreceptor outer segment fragments (POS) by retinal pigment epithelial (RPE) cells is essential for visual function. POS internalization by RPE cells requires the assembly of F-actin phagocytic cups beneath surface-tethered POS and Mer tyrosine kinase (MerTK) signaling. The activation of the Rho family GTPase Rac1 is necessary for phagocytic cup formation, and Rac1 is activated normally in MerTK-deficient RPE. We show here that mutant RPE lacking MerTK and wild-type RPE deprived of MerTK ligand both fail to form phagocytic cups regardless of Rac1 activation. However, in wild-type RPE in vivo, a decrease in RhoA activity coincides with the daily phagocytosis burst, while RhoA activity in MerTK-deficient RPE is constant. Elevating RhoA activity blocks phagocytic cup formation and phagocytosis by wild-type RPE. Conversely, inhibiting RhoA effector Rho kinases (ROCKs) rescues both F-actin assembly and POS internalization of primary RPE if MerTK or its ligand are lacking. Most strikingly, acute ROCK inhibition is sufficient to induce the formation and acidification of endogenous POS phagosomes by MerTK-deficient RPE ex vivo. Altogether, RhoA pathway inactivation is a necessary and sufficient downstream effect of MerTK phagocytic signaling such that the acute manipulation of cytosolic ROCK activity suffices to restore phagocytic capacity to MerTK-deficient RPE.


2004 ◽  
Vol 200 (12) ◽  
pp. 1539-1545 ◽  
Author(s):  
Emeline F. Nandrot ◽  
Yoonhee Kim ◽  
Scott E. Brodie ◽  
Xiaozhu Huang ◽  
Dean Sheppard ◽  
...  

Daily phagocytosis by the retinal pigment epithelium (RPE) of spent photoreceptor outer segment fragments is critical for vision. In the retina, early morning circadian photoreceptor rod shedding precedes synchronized uptake of shed photoreceptor particles by RPE cells. In vitro, RPE cells use the integrin receptor αvβ5 for particle binding. Here, we tested RPE phagocytosis and retinal function in β5 integrin–deficient mice, which specifically lack αvβ5 receptors. Retinal photoresponses severely declined with age in β5−/− mice, whose RPE accumulated autofluorescent storage bodies that are hallmarks of human retinal aging and disease. β5−/− RPE in culture failed to take up isolated photoreceptor particles. β5−/− RPE in vivo retained basal uptake levels but lacked the burst of phagocytic activity that followed circadian photoreceptor shedding in wild-type RPE. Rhythmic activation of focal adhesion and Mer tyrosine kinases that mediate wild-type retinal phagocytosis was also completely absent in β5−/− retina. These results demonstrate an essential role for αvβ5 integrin receptors and their downstream signaling pathways in synchronizing retinal phagocytosis. Furthermore, they identify the β5−/− integrin mouse strain as a new animal model of age-related retinal dysfunction.


1988 ◽  
Vol 91 (2) ◽  
pp. 303-312
Author(s):  
N.M. McKechnie ◽  
M. Boulton ◽  
H.L. Robey ◽  
F.J. Savage ◽  
I. Grierson

The cytoskeletal elements of normal (in situ) and cultured human retinal pigment epithelium (RPE) were studied by a variety of immunocytochemical techniques. Primary antibodies to vimentin and cytokeratins were used. Positive immunoreactivity for vimentin was obtained with in situ and cultured material. The pattern of reactivity obtained with antisera and monoclonals to cytokeratins was more complex. Cytokeratin immunoreactivity could be demonstrated in situ and in cultured cells. The pattern of cytokeratin expression was similar to that of simple or glandular epithelia. A monoclonal antibody that specifically recognizes cytokeratin 18 identified a population of cultured RPE cells that had particularly well-defined filamentous networks within their cytoplasm. Freshly isolated RPE was cytokeratin 18 negative by immunofluorescence, but upon culture cytokeratin 18 positive cells were identifiable. Cytokeratin 18 positive cells were identified in all RPE cultures (other than early primaries), regardless of passage number, age or sex of the donor. In post-confluent cultures cytokeratin 18 cells were identified growing over cytokeratin 18 negative cells, suggesting an association of cytokeratin 18 immunoreactivity with cell proliferation. Immunofluorescence studies of retinal scar tissue from two individuals revealed the presence of numerous cytokeratin 18 positive cells. These findings indicate that RPE cells can be identified by their cytokeratin immunoreactivity and that the overt expression of cytokeratin 18 may be associated with proliferation of human RPE both in vitro and in vivo.


Open Medicine ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. 745-751 ◽  
Author(s):  
Nilufer Kocak ◽  
Candan Ozogul ◽  
Suleyman Kaynak ◽  
Ulker Sonmez ◽  
Mehmet Zengin ◽  
...  

AbstractTo analyze the retinal toxicity of bevacizumab at various doses both in vitrectomized and non-vitrectomized rabbit models. Twenty- eight rabbits were included in the study. Twenty- four rabbits were assigned to six groups, with 4 of the rabbits in the control group. The animals in Groups 1, 2 and 3 received bevacizumab at a dose of 0.3 mg, 0.5 mg and 1.5 mg /eye, respectively. The rabbits in Groups 4, 5 and 6 received intravitreal bevacizumab of 0.3 mg, 0.5 mg and 1.5mg/eye, respectively, after gas compression vitrectomy. Two weeks after the procedure, the rabbits were euthanized. Retina tissue samples were then obtained and examined with both light and electron microscopes. In Groups 1, 2 and 3 after bevacizumab injection, toxic degeneration in the photoreceptor and retinal pigment epithelium cells was observed via electron microscopic examination. The findings in Groups 4 and 5 were normal as compared to the control group. In Group 6, toxicity in the bipolar neurons and photoreceptor cells was noticed. Increased toxicity and retinal penetration were noticed in all administered doses of bevacizumab in the presence of vitreous. In addition, ocular toxicity occurred through the injection of the highest dose of bevacizumab after vitrectomy. It is possible that the bevacizumab dose and the, vitreous are as important as the drug half-life in the vitreous.


2004 ◽  
Vol 164 (3) ◽  
pp. 373-383 ◽  
Author(s):  
Yoshikazu Imanishi ◽  
Matthew L. Batten ◽  
David W. Piston ◽  
Wolfgang Baehr ◽  
Krzysztof Palczewski

Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the intrinsic fluorescence of all-trans-retinyl esters, noninvasive two-photon microscopy revealed previously uncharacterized structures (6.9 ± 1.1 μm in length and 0.8 ± 0.2 μm in diameter) distinct from other cellular organelles, termed the retinyl ester storage particles (RESTs), or retinosomes. These structures form autonomous all-trans-retinyl ester-rich intracellular compartments distinct from other organelles and colocalize with adipose differentiation-related protein. As demonstrated by in vivo experiments using wild-type mice, the RESTs participate in 11-cis-retinal formation. RESTs accumulate in Rpe65−/− mice incapable of carrying out the enzymatic isomerization, and correspondingly, are absent in the eyes of Lrat−/− mice deficient in retinyl ester synthesis. These results indicate that RESTs located close to the RPE plasma membrane are essential components in 11-cis-retinal production.


2003 ◽  
Vol 51 (1) ◽  
pp. 121-124 ◽  
Author(s):  
Eleonore Fröhlich ◽  
Elke Maier ◽  
Christian Klessen

The retinal pigment epithelium (RPE) shows cell heterogeneity in morphology and enzymatic activity. Routine isolation procedures for RPE cells may reduce enzymatic activity and prevent the quantification of regional enzymatic differences in vivo. We developed a new technique for the isolation of RPE cells based on adhesion of the cells to agarose. The morphology of the isolated cells resembled that of RPE cells in vivo. The cells were viable in the dye exclusion test and showed a histochemical staining pattern as RPE cells in vivo. With this technique, quantitative regional differences in the enzymatic activities were detected.


2018 ◽  
Vol 115 (47) ◽  
pp. E11120-E11127 ◽  
Author(s):  
Tamara L. Lenis ◽  
Jane Hu ◽  
Sze Yin Ng ◽  
Zhichun Jiang ◽  
Shanta Sarfare ◽  
...  

Recessive Stargardt disease (STGD1) is an inherited blinding disorder caused by mutations in the Abca4 gene. ABCA4 is a flippase in photoreceptor outer segments (OS) that translocates retinaldehyde conjugated to phosphatidylethanolamine across OS disc membranes. Loss of ABCA4 in Abca4−/− mice and STGD1 patients causes buildup of lipofuscin in the retinal pigment epithelium (RPE) and degeneration of photoreceptors, leading to blindness. No effective treatment currently exists for STGD1. Here we show by several approaches that ABCA4 is additionally expressed in RPE cells. (i) By in situ hybridization analysis and by RNA-sequencing analysis, we show the Abca4 mRNA is expressed in human and mouse RPE cells. (ii) By quantitative immunoblotting, we show that the level of ABCA4 protein in homogenates of wild-type mouse RPE is about 1% of the level in neural retina homogenates. (iii) ABCA4 immunofluorescence is present in RPE cells of wild-type and Mertk−/− but not Abca4−/− mouse retina sections, where it colocalizes with endolysosomal proteins. To elucidate the role of ABCA4 in RPE cells, we generated a line of genetically modified mice that express ABCA4 in RPE cells but not in photoreceptors. Mice from this line on the Abca4−/− background showed partial rescue of photoreceptor degeneration and decreased lipofuscin accumulation compared with nontransgenic Abca4−/− mice. We propose that ABCA4 functions to recycle retinaldehyde released during proteolysis of rhodopsin in RPE endolysosomes following daily phagocytosis of distal photoreceptor OS. ABCA4 deficiency in the RPE may play a role in the pathogenesis of STGD1.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 667
Author(s):  
Eva Ramsay ◽  
Manuela Raviña ◽  
Sanjay Sarkhel ◽  
Sarah Hehir ◽  
Neil R. Cameron ◽  
...  

Inflammation is involved in the pathogenesis of several age-related ocular diseases, such as macular degeneration (AMD), diabetic retinopathy, and glaucoma. The delivery of anti-inflammatory siRNA to the retinal pigment epithelium (RPE) may become a promising therapeutic option for the treatment of inflammation, if the efficient delivery of siRNA to target cells is accomplished. Unfortunately, so far, the siRNA delivery system selection performed in dividing RPE cells in vitro has been a poor predictor of the in vivo efficacy. Our study evaluates the silencing efficiency of polyplexes, lipoplexes, and lipidoid-siRNA complexes in dividing RPE cells as well as in physiologically relevant RPE cell models. We find that RPE cell differentiation alters their endocytic activity and causes a decrease in the uptake of siRNA complexes. In addition, we determine that melanosomal sequestration is another significant and previously unexplored barrier to gene silencing in pigmented cells. In summary, this study highlights the importance of choosing a physiologically relevant RPE cell model for the selection of siRNA delivery systems. Such cell models are expected to enable the identification of carriers with a high probability of success in vivo, and thus propel the development of siRNA therapeutics for ocular disease.


2009 ◽  
Vol 424 (2) ◽  
pp. 243-252 ◽  
Author(s):  
Jaya P. Gnana-Prakasam ◽  
Muthusamy Thangaraju ◽  
Kebin Liu ◽  
Yonju Ha ◽  
Pamela M. Martin ◽  
...  

Haemochromatosis is an iron-overload disorder with age-dependent oxidative stress and dysfunction in a variety of tissues. Mutations in HFE (histocompatability leucocyte antigen class I-like protein involved in iron homoeostasis) are responsible for most cases of haemochromatosis. We demonstrated recently that HFE is expressed exclusively in the basal membrane of RPE (retinal pigment epithelium). In the present study, we used Hfe−/− mice to examine ferritin levels (an indirect readout for iron levels) and morphological changes in retina. We found increased ferritin accumulation in retina in 18-month-old, but not in 2-month-old, mice with considerable morphological damage compared with age-matched controls. The retinal phenotype included hypertrophy and hyperplasia of RPE. RPE cells isolated from Hfe−/− mice exhibited a hyperproliferative phenotype. We also compared the gene expression profile between wild-type and Hfe−/− RPE cells by microarray analysis. These studies showed that many cell cycle-related genes were differentially regulated in Hfe−/− RPE cells. One of the genes up-regulated in Hfe−/− RPE cells was Slc7a11 (where Slc is solute carrier) which codes for the ‘transporter proper’ xCT in the heterodimeric cystine/glutamate exchanger (xCT/4F2hc). This transporter plays a critical role in cellular glutathione status and cell-cycle progression. We confirmed the microarrray data by monitoring xCT mRNA levels by RT (reverse transcription)–PCR and also by measuring transport function. We also found increased levels of glutathione and the transcription factor/cell-cycle promoter AP1 (activator protein 1) in Hfe−/− RPE cells. Wild-type mouse RPE cells and human RPE cell lines, when loaded with iron by exposure to ferric ammonium citrate, showed increased expression and activity of xCT, reproducing the biochemical phenotype observed with Hfe−/− RPE cells.


Sign in / Sign up

Export Citation Format

Share Document