scholarly journals Nanoporous silicon carbide as nickel support for the carbon dioxide reforming of methane

2015 ◽  
Vol 5 (8) ◽  
pp. 4174-4183 ◽  
Author(s):  
C. Hoffmann ◽  
P. Plate ◽  
A. Steinbrück ◽  
S. Kaskel

High surface area SiCs are used as supports for nickel in the carbon dioxide reforming of methane. Proper pre-treatment of the SiC suppressed nickel silicide formation and allowed high levels of activity.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1962
Author(s):  
Mahboubeh Nabavinia ◽  
Baishali Kanjilal ◽  
Noahiro Fujinuma ◽  
Amos Mugweru ◽  
Iman Noshadi

To address the issue of global warming and climate change issues, recent research efforts have highlighted opportunities for capturing and electrochemically converting carbon dioxide (CO2). Despite metal doped polymers receiving widespread attention in this respect, the structures hitherto reported lack in ease of synthesis with scale up feasibility. In this study, a series of mesoporous metal-doped polymers (MRFs) with tunable metal functionality and hierarchical porosity were successfully synthesized using a one-step copolymerization of resorcinol and formaldehyde with Polyethyleneimine (PEI) under solvothermal conditions. The effect of PEI and metal doping concentrations were observed on physical properties and adsorption results. The results confirmed the role of PEI on the mesoporosity of the polymer networks and high surface area in addition to enhanced CO2 capture capacity. The resulting Cobalt doped material shows excellent thermal stability and promising CO2 capture performance, with equilibrium adsorption of 2.3 mmol CO2/g at 0 °C and 1 bar for at a surface area 675.62 m2/g. This mesoporous polymer, with its ease of synthesis is a promising candidate for promising for CO2 capture and possible subsequent electrochemical conversion.


2019 ◽  
Vol 10 (33) ◽  
pp. 4611-4620 ◽  
Author(s):  
Ningning Song ◽  
Tianjiao Wang ◽  
Hongyan Yao ◽  
Tengning Ma ◽  
Kaixiang Shi ◽  
...  

Microporous polyimide networks with high surface area and excellent CO2 adsorption performance have been constructed based on cross-linkable linear polyimides through crosslinking reaction.


Langmuir ◽  
2010 ◽  
Vol 26 (4) ◽  
pp. 2707-2713 ◽  
Author(s):  
Muhammad B. I. Chowdhury ◽  
Rouhong Sui ◽  
Rahima A. Lucky ◽  
Paul A. Charpentier

1986 ◽  
Vol 73 ◽  
Author(s):  
Joseph R. Fox ◽  
Douglas A. White ◽  
Susan M. Oleff ◽  
Robert D. Boyer ◽  
Phyllis A. Budinger

AbstractSol-gel precursors to silicon carbide have been prepared using trifunctional chloro and alkoxysilanes which contain both the silicon and carbon necessary for SiC formation. Crosslinked gels having the ideal formula [RSiO1 5].]n have been synthesized by a hydrolysis/condensation scheme for a series of saturated and unsaturated R groups. The starting gels have been characterized by a variety of elemental analysis, spectroscopic and physical measurements including IR. XRD. TGA.. surface area and pore volume. A particularly powerful method for characterizing these gels is the combination of 13C and 29 Si solid state NMR which can provide information about the degree of crosslinking as well as residual hydroxy/alkoxy content.The controlled pyrolysis of these gels has been used to prepare silicon carbide-containing ceramic products with surface areas in excess of 600m2/gm. The pyrolysis products are best described as a partially crystalline, partially amorphous mixture of β-SiC, silica and carbon. The effect of carbon chain length and the degree of unsaturation in the R group on the composition and surface area of the product has been determined. The origin of the high surface area of the pyrolysis products has been identified and its implications on potential uses of these materials is discussed.


Sign in / Sign up

Export Citation Format

Share Document