Testing Aβ toxicity on primary CNS cultures using drug-screening microfluidic chips

Lab on a Chip ◽  
2014 ◽  
Vol 14 (15) ◽  
pp. 2860-2866 ◽  
Author(s):  
A. Ruiz ◽  
P. Joshi ◽  
R. Mastrangelo ◽  
M. Francolini ◽  
C. Verderio ◽  
...  

Neuronal viability tests performed in primary cultures and co-cultures of the central nervous system grown on microfluidic drug screening chips show a neuroprotective action of FTY720 in cultures degenerated by oligomeric beta amyloid.

1996 ◽  
Vol 109 (13) ◽  
pp. 2959-2966
Author(s):  
G. Escher ◽  
C. Bechade ◽  
S. Levi ◽  
A. Triller

Agrin, a synaptic basal lamina protein synthesized by motoneurons is involved in the aggregation of nicotinic acetylcholine receptors (nAchRs) at the neuromuscular junction. Agrin transcripts are broadly expressed in the central nervous system (CNS) including non-cholinergic regions. This wide distribution of agrin mRNAs raises the question of its function in these areas. To approach this question, we analysed the expression and cellular distribution of agrin in primary cultures of rat embryonic dorsal horn neurons. Polymerase chain reaction analysis demonstrated that the four agrin isoform (B0, B8, B11, B19) mRNAs are expressed as early as 4 days in vitro, before the formation of functional synaptic contacts. Western blots also showed that agrin-like proteins are secreted in conditioned medium from 7 days cultures. We analysed the subcellular distribution of agrin by double immunolabeling and fluorescence microscopy. We found that agrin is synthesized by almost all neurons and was present in the somata and in the axons but not in dendrites within the sensitivity of the detection. This intra-axonal localisation of agrin could only be seen after permeabilization. Furthermore, agrin immunoreactive axons were found adjacent to gephyrin, the postsynaptic glycine receptor-associated protein. Altogether, our results suggest that, as established at the neuromuscular junction, agrin may be involved in pre- to postsynaptic interactions in the central nervous system.


2002 ◽  
Vol 29 (3) ◽  
pp. 319-325 ◽  
Author(s):  
SM MacKenzie ◽  
M Lai ◽  
CJ Clark ◽  
R Fraser ◽  
CE Gomez-Sanchez ◽  
...  

The central nervous system produces many of the enzymes responsible for corticosteroid synthesis. A model system to study the regulation of this local system would be valuable. Previously, we have shown that primary cultures of hippocampal neurons isolated from the fetal rat can perform the biochemical reactions associated with the enzymes 11beta-hydroxylase and aldosterone synthase. Here, we demonstrate directly that these enzymes are present within primary cultures of fetal rat hippocampal neurons.


Author(s):  
Rafael Rivas-Santisteban ◽  
Ana I. Rodriguez-Perez ◽  
Ana Muñoz ◽  
Irene Reyes-Resina ◽  
José Luis Labandeira-García ◽  
...  

Abstract Background/Aims: The renin-angiotensin system (RAS) is altered in Parkinson’s disease (PD), a disease due to substantia nigra neurodegeneration and whose dopamine-replacement therapy, using the precursor levodopa, leads to dyskinesias as the main side effect. Angiotensin AT1 and AT2 receptors, mainly known for their role in regulating water homeostasis and blood pressure and able to form heterodimers (AT1/2Hets), are present in the central nervous system. We assessed the functionality and expression of AT1/2Hets in Parkinson Disease (PD).Methods: Immunocytochemistry was used to analyze the colocalization between angiotensin receptors, bioluminescence resonance energy transfer was used to detect AT1/2Hets. Calcium and cAMP determination, MAPK activation and label-free assays were performed to characterize signaling in homologous and heterologous systems. Proximity ligation assays was used to quantify receptor expression in mouse primary cultures and in rat striatal sections.Results: We confirmed that AT1 and AT2 receptors form AT1/2Hets that are expressed in cells of the central nervous system. AT1/2Hets are novel functional units with particular signaling properties. Importantly, the coactivation of the two receptors in the heteromer reduces the signaling output of angiotensin. Remarkably, AT1/2Hets that are expressed in both striatal neurons and microglia show a cross-potentiation, i.e. candesartan, the antagonist of AT1 increases the effect of AT2 receptor agonists. In addition, the level of striatal expression increased in the unilateral 6-OH-dopamine lesioned rat PD model and was markedly higher in parkinsonian-like animals that did not become dyskinetic upon levodopa chronic administration if compared with expression in those that became dyskinetic.Conclusion: The results indicate that boosting the action of neuroprotective AT2 receptors using an AT1 receptor antagonist constitutes a promising therapeutic strategy in PD.


Amyloid ◽  
2014 ◽  
Vol 21 (2) ◽  
pp. 138-139 ◽  
Author(s):  
Raj Poovindran Anada ◽  
Kum Thong Wong ◽  
May Christine Malicdan ◽  
Khean Jin Goh ◽  
Yukiko Hayashi ◽  
...  

1993 ◽  
Vol 122 (5) ◽  
pp. 1067-1077 ◽  
Author(s):  
H Haegel ◽  
C Tölg ◽  
M Hofmann ◽  
R Ceredig

The CD44 adhesion molecule is expressed by astrocytes, glial-type cells which exhibit features of accessory cells for immune responses in the central nervous system. In primary cultures of mouse astrocytes, we have observed that surface expression and mRNA levels of CD44 are induced following stimulation with either PMA, or tumor necrosis factor alpha plus gamma interferon. Comparison of CD44 splice variants expressed by astrocytes and a T cell hybridoma shows that upon activation, both cell types express a similar pattern of CD44 transcripts. Thus, in both cell types, CD44 transcripts are produced which contain additional exons, including the exon v6 (known to be expressed by in vivo activated lymphocytes and by metastatic variants of tumor cells) as well as variants of larger size. In the autoimmune disease multiple sclerosis, activated T cells cross the blood-brain barrier and lead to inflammation in the central nervous system. Analysis of mice with experimental allergic encephalomyelitis, frequently used as an animal model of multiple sclerosis, shows that CD44 is induced in vivo on glial cells surrounding inflammatory lesions. Using an in vitro model for adhesion between T cells and astrocytes, we have found a correlation between the activation state of these cells and their adhesion potential. Dose-dependent inhibition of adhesion by hyaluronate and by anti-CD44 monoclonal antibody KM81 shows that CD44 is involved in the adhesive interactions between T cells and astrocytes.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ilaria Balbo ◽  
Francesca Montarolo ◽  
Enrica Boda ◽  
Filippo Tempia ◽  
Eriola Hoxha

ELOVL5 (Elongase of Very-Long Fatty Acid 5) gene encodes for an enzyme that elongates long chain fatty acids, with a marked preference for polyunsaturated molecules. In particular, it plays an essential role in the elongation of omega-3 and omega-6 fatty acids, precursors for long-chain polyunsaturated fatty acids (PUFAs). Mutations of ELOVL5 cause the spino-cerebellar ataxia type 38 (SCA38), a rare autosomal neurological disease characterized by gait abnormality, dysarthria, dysphagia, hyposmia and peripheral neuropathy, conditions well represented by a mouse model with a targeted deletion of this gene (Elovl5–/– mice). However, the expression pattern of this enzyme in neuronal and glial cells of the central nervous system (CNS) is still uninvestigated. This work is aimed at filling this gap of knowledge by taking advantage of an Elovl5-reporter mouse line and immunofluorescence analyses on adult mouse CNS sections and glial cell primary cultures. Notably, Elovl5 appears expressed in a region- and cell type-specific manner. Abundant Elovl5-positive cells were found in the cerebellum, brainstem, and primary and accessory olfactory regions, where mitral cells show the most prominent expression. Hippocampal pyramidal cells of CA2/CA3 where also moderately labeled, while in the rest of the telencephalon Elovl5 expression was high in regions related to motor control. Analysis of primary glial cell cultures revealed Elovl5 expression in oligodendroglial cells at various maturation steps and in microglia, while astrocytes showed a heterogeneous in vivo expression of Elovl5. The elucidation of Elovl5 CNS distribution provides relevant information to understand the physiological functions of this enzyme and its PUFA products, whose unbalance is known to be involved in many pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document