scholarly journals Antiviral drug discovery: broad-spectrum drugs from nature

2015 ◽  
Vol 32 (1) ◽  
pp. 29-48 ◽  
Author(s):  
J. P. Martinez ◽  
F. Sasse ◽  
M. Brönstrup ◽  
J. Diez ◽  
A. Meyerhans

Exploiting the power of nature to fight viral infections. This review describes the concept of direct- and host-acting natural products with broad-spectrum antiviral activities and provides promising examples derived from plants, fungi, bacteria and marine organisms.

Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 183 ◽  
Author(s):  
Qinghua Cui ◽  
Ruikun Du ◽  
Miaomiao Liu ◽  
Lijun Rong

Lignans are widely produced by various plant species; they are a class of natural products that share structural similarity. They usually contain a core scaffold that is formed by two or more phenylpropanoid units. Lignans possess diverse pharmacological properties, including their antiviral activities that have been reported in recent years. This review discusses the distribution of lignans in nature according to their structural classification, and it provides a comprehensive summary of their antiviral activities. Among them, two types of antiviral lignans—podophyllotoxin and bicyclol, which are used to treat venereal warts and chronic hepatitis B (CHB) in clinical, serve as examples of using lignans for antivirals—are discussed in some detail. Prospects of lignans in antiviral drug discovery are also discussed.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2796 ◽  
Author(s):  
Vanessa Shi Li Goh ◽  
Chee-Keng Mok ◽  
Justin Jang Hann Chu

Over the course of the last 50 years, the emergence of several arboviruses have resulted in countless outbreaks globally. With a high proportion of infections occurring in tropical and subtropical regions where arthropods tend to be abundant, Asia in particular is a region that is heavily affected by arboviral diseases caused by dengue, Japanese encephalitis, West Nile, Zika, and chikungunya viruses. Major gaps in protection against the most significant emerging arboviruses remains as there are currently no antivirals available, and vaccines are only available for some. A potential source of antiviral compounds could be discovered in natural products—such as vegetables, fruits, flowers, herbal plants, marine organisms and microorganisms—from which various compounds have been documented to exhibit antiviral activities and are expected to have good tolerability and minimal side effects. Polyphenols and plant extracts have been extensively studied for their antiviral properties against arboviruses and have demonstrated promising results. With an abundance of natural products to screen for new antiviral compounds, it is highly optimistic that natural products will continue to play an important role in contributing to antiviral drug development and in reducing the global infection burden of arboviruses.


RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34959-34976
Author(s):  
Enas Reda Abdelaleem ◽  
Mamdouh Nabil Samy ◽  
Samar Yehia Desoukey ◽  
Miaomiao Liu ◽  
Ronald J. Quinn ◽  
...  

Marine organisms have been considered an interesting target for the discovery of different classes of secondary natural products with wide-ranging biological activities.


2019 ◽  
Author(s):  
Paul Kelly ◽  
Fatemeh Hadi-Nezhad ◽  
Dennis Liu ◽  
Travis J. Lawrence ◽  
Roger G. Linington ◽  
...  

AbstractThe development of chemotherapies against eukaryotic pathogens is especially challenging because of both the evolutionary conservation of drug targets between host and parasite, and the evolution of strain-dependent drug resistance. There is a strong need for new nontoxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania and Trypanosoma. A relatively untested approach is to target macromolecular interactions in parasites rather than small molecular interactions, under the hypothesis that the features specifying macromolecular interactions diverge more rapidly through coevolution. We computed tRNA Class-Informative Features in humans and eight clades of trypanosomes, identifying parasite-specific informative features (including base-pairs and base mis-pairs) that are broadly conserved over approximately 250 million years of trypanosome evolution. Validating these observations, we demonstrated biochemically that tRNA:aminoacyl-tRNA synthetase interactions are a promising target for anti-trypanosomal drug discovery. From a marine natural products extract library, we identified several fractions with inhibitory activity toward Leishmania major alanyl-tRNA synthetase (AlaRS) but no activity against the human homolog. These marine natural products extracts showed cross-reactivity towards Trypanosoma cruzi AlaRS indicating the broad-spectrum potential of our network predictions. These findings support a systems biology model in which combination chemotherapies that target multiple tRNA-synthetase interactions should be comparatively less prone to the emergence of resistance than conventional single drug therapies.Author SummaryTrypanosome parasites pose a significant health risk worldwide. Conventional drug development strategies have proven challenging given the high conservation between humans and pathogens, with off-target toxicity being a common problem. Protein synthesis inhibitors have historically been an attractive target for antimicrobial discovery against bacteria, and more recently for eukaryotic pathogens. Here we propose that exploiting pathogen-specific tRNA-synthetase interactions offers the potential for highly targeted drug discovery. To this end, we improved tRNA gene annotations in trypanosome genomes, identified functionally informative trypanosome-specific tRNA features, and showed that these features are highly conserved over approximately 250 million years of trypanosome evolution. Highlighting the species-specific and broad-spectrum potential of our approach, we identified natural product inhibitors against the parasite translational machinery that have no effect on the homologous human enzyme.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Justus Amuche Nweze ◽  
Florence N. Mbaoji ◽  
Yan-Ming Li ◽  
Li-Yan Yang ◽  
Shu-Shi Huang ◽  
...  

Abstract Background Malaria and neglected communicable protozoa parasitic diseases, such as leishmaniasis, and trypanosomiasis, are among the otherwise called diseases for neglected communities, which are habitual in underprivileged populations in developing tropical and subtropical regions of Africa, Asia, and the Americas. Some of the currently available therapeutic drugs have some limitations such as toxicity and questionable efficacy and long treatment period, which have encouraged resistance. These have prompted many researchers to focus on finding new drugs that are safe, effective, and affordable from marine environments. The aim of this review was to show the diversity, structural scaffolds, in-vitro or in-vivo efficacy, and recent progress made in the discovery/isolation of marine natural products (MNPs) with potent bioactivity against malaria, leishmaniasis, and trypanosomiasis. Main text We searched PubMed and Google scholar using Boolean Operators (AND, OR, and NOT) and the combination of related terms for articles on marine natural products (MNPs) discovery published only in English language from January 2016 to June 2020. Twenty nine articles reported the isolation, identification and antiparasitic activity of the isolated compounds from marine environment. A total of 125 compounds were reported to have been isolated, out of which 45 were newly isolated compounds. These compounds were all isolated from bacteria, a fungus, sponges, algae, a bryozoan, cnidarians and soft corals. In recent years, great progress is being made on anti-malarial drug discovery from marine organisms with the isolation of these potent compounds. Comparably, some of these promising antikinetoplastid MNPs have potency better or similar to conventional drugs and could be developed as both antileishmanial and antitrypanosomal drugs. However, very few of these MNPs have a pharmaceutical destiny due to lack of the following: sustainable production of the bioactive compounds, standard efficient screening methods, knowledge of the mechanism of action, partnerships between researchers and pharmaceutical industries. Conclusions It is crystal clear that marine organisms are a rich source of antiparasitic compounds, such as alkaloids, terpenoids, peptides, polyketides, terpene, coumarins, steroids, fatty acid derivatives, and lactones. The current and future technological innovation in natural products drug discovery will bolster the drug armamentarium for malaria and neglected tropical diseases.


2021 ◽  
pp. 144
Author(s):  
Muhammad Alib Batistuta ◽  
Annisa Aulia ◽  
Paula Mariana Kustiawan

Up to present, many deadly diseases are caused by viral infections. Herbal therapy is a preventive effort made by the community to overcome diseases that come from viruses. Antiviral drug resistance is also the reason people consume herbs from natural ingredients. One of the natural products has the potential to come from kelulut bee products consisting of propolis, pollen, and honey. The kelulut bee or stingless bee is a type of bee that is commonly found in countries with tropical climates such as Indonesia, but there is still little scientific information that examines its potential as an antiviral. This study aims to analyze data on the potential antiviral activity of kelulut bee products through the collection of related articles. The research conducted is a literature review, so the research method is carried out by collecting related articles using search engines such as NCBI, Sciencedirect, and Google Schoolar. Kelulut bee products such as propolis, pollen and honey have potential pharmacological activity as antiviral. This anti-viral activity is due to the presence of compounds such as alkaloids, flavones, apigenin derivatives and other compounds which will be discussed further. Natural products from kelulut bees have potential as an alternative to antiviral therapy. It is also recommended to conduct more in-depth research on the potential of kelulut bee natural products to obtain these therapeutic products.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1665
Author(s):  
Irina Leneva ◽  
Nadezhda Kartashova ◽  
Artem Poromov ◽  
Anastasiia Gracheva ◽  
Ekaterina Korchevaya ◽  
...  

An escalating pandemic of the novel SARS-CoV-2 virus is impacting global health, and effective antivirals are needed. Umifenovir (Arbidol) is an indole-derivative molecule, licensed in Russia and China for prophylaxis and treatment of influenza and other respiratory viral infections. It has been shown that umifenovir has broad spectrum activity against different viruses. We evaluated the sensitivity of different coronaviruses, including the novel SARS-CoV-2 virus, to umifenovir using in vitro assays. Using a plaque assay, we revealed an antiviral effect of umifenovir against seasonal HCoV-229E and HCoV-OC43 coronaviruses in Vero E6 cells, with estimated 50% effective concentrations (EC50) of 10.0 ± 0.5 µM and 9.0 ± 0.4 µM, respectively. Umifenovir at 90 µM significantly suppressed plaque formation in CMK-AH-1 cells infected with SARS-CoV. Umifenovir also inhibited the replication of SARS-CoV-2 virus, with EC50 values ranging from 15.37 ± 3.6 to 28.0 ± 1.0 µM. In addition, 21–36 µM of umifenovir significantly suppressed SARS-CoV-2 virus titers (≥2 log TCID50/mL) in the first 24 h after infection. Repurposing of antiviral drugs is very helpful in fighting COVID-19. A safe, pan-antiviral drug such as umifenovir could be extremely beneficial in combating the early stages of a viral pandemic.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6197
Author(s):  
Eyana Thomas ◽  
Laura E. Stewart ◽  
Brien A. Darley ◽  
Ashley M. Pham ◽  
Isabella Esteban ◽  
...  

Viral infections are among the most complex medical problems and have been a major threat to the economy and global health. Several epidemics and pandemics have occurred due to viruses, which has led to a significant increase in mortality and morbidity rates. Natural products have always been an inspiration and source for new drug development because of their various uses. Among all-natural sources, plant sources are the most dominant for the discovery of new therapeutic agents due to their chemical and structural diversity. Despite the traditional use and potential source for drug development, natural products have gained little attention from large pharmaceutical industries. Several plant extracts and isolated compounds have been extensively studied and explored for antiviral properties against different strains of viruses. In this review, we have compiled antiviral plant extracts and natural products isolated from plants reported since 2015.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 464 ◽  
Author(s):  
Barzkar ◽  
Tamadoni Jahromi ◽  
Poorsaheli ◽  
Vianello

Marine organisms produce a large array of natural products with relevance in drug discovery. These compounds have biological activities such as antioxidant, antibacterial, antitumor, antivirus, anticoagulant, anti-inflammatory, antihypertensive, antidiabetic, and so forth. Consequently, several of the metabolites have made it to the advanced stages of clinical trials, and a few of them are commercially available. In this review, novel information on natural products isolated from marine microorganisms, microalgae, and macroalgae are presented. Given due research impetus, these marine metabolites might emerge as a new wave of promising drugs.


Planta Medica ◽  
2020 ◽  
Vol 86 (10) ◽  
pp. 659-664 ◽  
Author(s):  
Andreas Hensel ◽  
Rudolf Bauer ◽  
Michael Heinrich ◽  
Verena Spiegler ◽  
Oliver Kayser ◽  
...  

AbstractAs viral infections are an increasing threat to human societies, the need for new therapeutic strategies is becoming even more obvious. As no vaccine is available for COVID-19, the development of directly acting antiviral agents and preventive strategies have to be considered. Nature provides a huge reservoir of anti-infectious compounds, from which we can deduce innovative ideas, therapies, and products. Anti-adhesive natural products interact with the receptor-mediated recognition and early interaction of viruses with the host cells, leading to a reduced internalisation of the virus and reduced infections (e.g., procyanidin-B-2-di-O-gallate against influenza and herpes virus). Lignans like podophyllotoxin and bicyclol show strong antiviral activities against different viruses, and essential oils can directly interact with viral membranes and reduce the hostʼs inflammatory responses (e.g., 1,8-cineol). Echinacea extracts stimulate the immune system, and bioavailable alkamides are key players by interacting with immunomodulating cannabinoid receptors. COVID-19 and SARS-CoV-2 infections have, in part, successfully been treated in China by preparations from traditional Chinese medicine and, while it is too early to draw conclusions, some promising data are available. There is huge potential, but intensified research is needed to develop evidence-based medicines with a clearly defined chemical profile. Intensified research and development, and therefore funding, are needed for exploiting natureʼs reservoir against viral infections. Combined action for basic research, chemistry, pharmacognosy, virology, and clinical studies, but also supply chain, sustainable sourcing, and economic aspects have to be considered. This review calls for intensified innovative science on natural products for the patients and for a healthier world!


Sign in / Sign up

Export Citation Format

Share Document