Co-delivery of drug nanoparticles and siRNA mediated by a modified cell penetrating peptide for inhibiting cancer cell proliferation

RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20554-20556 ◽  
Author(s):  
Dafeng Chu ◽  
Wen Xu ◽  
Ran Pan ◽  
P. Chen

Modified cell penetrating peptide can stabilize drug nanoparticles with improved efficacy and co-deliver siRNA inducing synergy on the inhibition of cancer cell growth.

Author(s):  
Man Zhang ◽  
Jie Tian ◽  
Rui Wang ◽  
Mengqiu Song ◽  
Ran Zhao ◽  
...  

Lung cancer is a leading cause cancer-related death with diversity. A promising approach to meet the need for improved cancer treatment is drug repurposing. Dasatinib, a second generation of tyrosine kinase inhibitors (TKIs), is a potent treatment agent for chronic myeloid leukemia (CML) approved by FDA, however, its off-targets and the underlying mechanisms in lung cancer have not been elucidated yet. LIM kinase 1 (LIMK1) is a serine/threonine kinase, which is highly upregulated in human cancers. Herein, we demonstrated that dasatinib dose-dependently blocked lung cancer cell proliferation and repressed LIMK1 activities by directly targeting LIMK1. It was confirmed that knockdown of LIMK1 expression suppressed lung cancer cell proliferation. From the in silico screening results, dasatinib may target to LIMK1. Indeed, dasatinib significantly inhibited the LIMK1 activity as evidenced by kinase and binding assay, and computational docking model analysis. Dasatinib inhibited lung cancer cell growth, while induced cell apoptosis as well as cell cycle arrest at the G1 phase. Meanwhile, dasatinib also suppressed the expression of markers relating cell cycle, cyclin D1, D3, and CDK2, and increased the levels of markers involved in cell apoptosis, cleaved caspase-3 and caspase-7 by downregulating phosphorylated LIMK1 (p-LIMK1) and cofilin (p-cofilin). Furthermore, in patient-derived xenografts (PDXs), dasatinib (30 mg/kg) significantly inhibited the growth of tumors in SCID mice which highly expressed LIMK1 without changing the bodyweight. In summary, our results indicate that dasatinib acts as a novel LIMK1 inhibitor to suppress the lung cancer cell proliferation in vitro and tumor growth in vivo, which suggests evidence for the application of dasatinib in lung cancer therapy.


2002 ◽  
Vol 74 (8) ◽  
pp. 1469-1477 ◽  
Author(s):  
Yoav Sharoni ◽  
Michael Danilenko ◽  
Shlomo Walfisch ◽  
Hadar Amir ◽  
Amit Nahum ◽  
...  

There is extensive evidence that high intake of fruits and vegetables is associated with decreased risk of many types of cancers. Thus, it is widely accepted that diet changes are a powerful means to prevent cancer. Although there is a growing interest in the role of the tomato carotenoid lycopene in cancer prevention and treatment, we hypothesize that a single micronutrient cannot replace the power of the concerted action of multiple agents derived from a diet rich in fruits and vegetables. Indeed, we found that lycopene can synergize with other phytonutrients in the inhibition of cancer cell growth. The mechanism underlying the inhibitory effects of lycopene and other carotenoids involves interference in several pathways related to cancer cell proliferation and includes changes in the expression of many proteins participating in these processes, such as connexins, cyclins, cyclin-dependent kinases, and their inhibitors. These changes in protein expression suggest that the initial effect involves modulation of transcription by ligand-activated nuclear receptors or by other transcription factors. It is feasible to suggest that carotenoids and their oxidized derivatives interact with a network of transcription systems that are activated by different ligands at low affinity and specificity and that this activation leads to the synergistic inhibition of cell growth.


2020 ◽  
Author(s):  
Yue Chang ◽  
Min Hao ◽  
Ru Jia ◽  
Yihui Zhao ◽  
Yixuan Cai ◽  
...  

Abstract Background: Endometrial cancer is one of the most common cancers affecting women's health. The pathogenesis of endometrial cancer involves many signaling pathways which are related with transcription factors or microRNAs. Recent studies have reported that endometrial cancer is also related with the sexual-mediated hormones. The purpose of this research is to treat the endometrial cancer with the hormone-related drugs, and find out the specific molecular mechanism. Methods: In this study, RL95-2 cells and Ishikawa cells were used as the endometrial cancer cell models. miR-492 was transfected into RL95-2 cells and Ishikawa cells. The miRNA expression was measured by qRT-PCR. The protein expression was measured by western blot. Cell proliferation was monitored using the MTT assay and cell colony formation assay. Cell apoptosis was monitored using EdU assay. Results: Firstly, the results indicated that metapristone as a kind of hormone-related drugs could significantly inhibit the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Meanwhile, miR-492 was detected to be highly expressed in the endometrial cancer cell lines. Overexpression of miR-492 could promote the cell proliferation and inhibit the cell apoptosis. Furthermore, the results demonstrated that the downstream target genes of miR-492 were Klf5 and Nrf1, which were inhibited by metapristone. At the animal level, metapristone also inhibited the endometrial cancer cell growth through down-regulating the expression of miR-492 and decreasing the protein level of Klf5 and Nrf1. Conclusion: Taken together, this study indicated that metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis related signaling pathway and the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis of endometrial cancer in clinical treatment.


2020 ◽  
Author(s):  
Yue Chang ◽  
Min Hao ◽  
Ru Jia ◽  
Yihui Zhao ◽  
Yixuan Cai ◽  
...  

Abstract Background: Endometrial cancer is the prevalent invasive gynecological cancer in the world. The pathogenesis of endometrial cancer involves many signaling pathways which are related with transcription factors or microRNAs. Metapristone is a hormone related drug and widely used in endometrial cancer clinical therapeutics. However, the deep regulatory mechanism of metapristone is not clear. In this research, we aimed to figure out the specific molecular mechanism during the treatment of endometrial cancer with metapristone.Methods: In this study, RL95-2 cells and Ishikawa cells were used as the endometrial cancer cell models. miR-492 was transfected into RL95-2 cells and Ishikawa cells. The miRNA expression was measured by qRT-PCR. Moreover, the mice tumor model was used to confirm the function of metapristone and the regulating process by miR-492/Klf5/Nrf1 axis in vivo. The protein expression was measured by western blot. Cell proliferation and apoptosis was monitored using the MTT assay, cell colony formation assay and EdU assay.Results: Firstly, the results indicated that metapristone as a kind of hormone-related drugs could significantly inhibit the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Meanwhile, miR-492 was detected to be highly expressed in the endometrial cancer cell lines. Overexpression of miR-492 could promote the cell proliferation and inhibit the cell apoptosis. Furthermore, the results demonstrated that the downstream target genes of miR-492 were Klf5 and Nrf1, which were inhibited by metapristone. At the animal level, metapristone also inhibited the endometrial cancer cell growth through down-regulating the expression of miR-492 and decreasing the protein level of Klf5 and Nrf1. Conclusion: Taken together, this study indicated that metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis related signaling pathway and the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis of endometrial cancer in clinical treatment.


2021 ◽  
Vol 28 ◽  
Author(s):  
Yuan Pan ◽  
Yuting Jiang ◽  
Yingli Cui ◽  
Jihong Zhu ◽  
Yang Yu

Background : Lactoferricin peptide (LP) has been reported to control cancer cell proliferation. NF‐κB interacting lncRNA (NKILA) is a tumor suppressor in several cancers. Objective: We aimed to explore the potential function of the truncated LP (TLP) in the prevention of cervical cancer cell proliferation. Methods: Bioinformatics analysis via PPA-Pred2 showed that 18-aa N-terminus of truncated lactoferricin peptide (TLP18, FKCRRWQWRMKKLGAPSI) shows higher affinity with nuclear factor kappaB (NF-κB) than LP. The effects of LP and TLP18 on cervical cancer cells SiHa and HeLa and the related mechanisms were explored by investigating NF‐κB and lncRNA-NKILA. Results : TLP18 shows an inhibitory rate up to 0.4-fold higher than LP on the growth of cervical cancer cells (P<0.05). NKILA siRNA promoted cell growth whether LP or TLP18 treatment (P<0.05). TLP18 treatment increases the level of lncRNA-NKILA and reduces the level of NF‐κB up to 0.2-fold and 0.6-fold higher than LP (P<0.05), respectively. NKILA siRNA increased the levels of NF‐κB, cleaved caspase-3, and BAX (P<0.05). TLP18 increased apoptotic cell rate up to 0.2-fold higher than LP, while NKILA siRNA inhibited cell apoptosis cell growth even LP or TLP18 treatment. Conclusion: Truncated Lactoferricin peptide controls cervical cancer cell proliferation via lncRNA-NKILA/NF‐κB feedback loop.


2020 ◽  
Author(s):  
Yun Liu ◽  
Yue Chang ◽  
Yixuan Cai

Abstract Background: Endometrial cancer is one of the most common cancers affecting women's health. The pathogenesis of endometrial cancer involves many signaling pathways which are related with transcription factors or microRNAs. Recent studies have reported that endometrial cancer is also related with the sexual-mediated hormones. The purpose of this research is to treat the endometrial cancer with the hormone-related drugs, and find out the specific molecular mechanism. Methods: In this study, RL95-2 cells and Ishikawa cells were used as the endometrial cancer cell models. miR-492 was transfected into RL95-2 cells and Ishikawa cells. The miRNA expression was measured by qRT-PCR. The protein expression was measured by western blot. Cell proliferation was monitored using the MTT assay and cell colony formation assay. Cell apoptosis was monitored using EdU assay. Results: Firstly, the results indicated that metapristone as a kind of hormone-related drugs could significantly inhibit the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Meanwhile, miR-492 was detected to be highly expressed in the endometrial cancer cell lines. Overexpression of miR-492 could promote the cell proliferation and inhibit the cell apoptosis. Furthermore, the results demonstrated that the downstream target genes of miR-492 were Klf5 and Nrf1, which were inhibited by metapristone. At the animal level, metapristone also inhibited the endometrial cancer cell growth through down-regulating the expression of miR-492 and decreasing the protein level of Klf5 and Nrf1. Conclusion: Taken together, this study indicated that metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis related signaling pathway and the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis of endometrial cancer in clinical treatment.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2858
Author(s):  
Jiling Feng ◽  
Anahitasadat Mansouripour ◽  
Zhichao Xi ◽  
Li Zhang ◽  
Gang Xu ◽  
...  

Nujiangexanthone A (NJXA), a bioactive component isolated from the leaves of Garcinia nujiangensis, has been reported to exhibit anti-inflammatory, antioxidant, and antitumor effects. Our previous work has shown that NJXA induced G0/1 arrest and apoptosis, thus suppressing cervical cancer cell growth. The present study provides new evidence that NJXA can induce cell death in HeLa cells by promoting mitophagy. We first identified that NJXA triggered GFP-LC3 and YFP-Parkin puncta accumulation, which are biomarkers of mitophagy. Moreover, NJXA degraded the mitochondrial membrane proteins Tom20 and Tim23 and mitochondrial fusion proteins MFN1 and MFN2, downregulated Parkin, and stabilized PINK1. Additionally, we revealed that NJXA induced lysosome degradation and colocalization of mitochondria and autophagosomes, which was attenuated by knocking down ATG7, the key regulator of mitophagy. Furthermore, since mitophagy is induced under starvation conditions, we detected the cytotoxic effect of NJXA in nutrient-deprived HeLa cells and observed better cytotoxicity. Taken together, our work contributes to the further clarification of the mechanism by which NJXA inhibits cervical cancer cell proliferation and provides evidence that NJXA has the potential to develop anticancer drugs.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
José Manuel Calderón-Montaño ◽  
Estefanía Burgos-Morón ◽  
Manuel Luis Orta ◽  
Dolores Maldonado-Navas ◽  
Irene García-Domínguez ◽  
...  

Cardiac glycosides, also known as cardiotonic steroids, are a group of natural products that share a steroid-like structure with an unsaturated lactone ring and the ability to induce cardiotonic effects mediated by a selective inhibition of the Na+/K+-ATPase. Cardiac glycosides have been used for many years in the treatment of cardiac congestion and some types of cardiac arrhythmias. Recent data suggest that cardiac glycosides may also be useful in the treatment of cancer. These compounds typically inhibit cancer cell proliferation at nanomolar concentrations, and recent high-throughput screenings of drug libraries have therefore identified cardiac glycosides as potent inhibitors of cancer cell growth. Cardiac glycosides can also block tumor growth in rodent models, which further supports the idea that they have potential for cancer therapy. Evidence also suggests, however, that cardiac glycosides may not inhibit cancer cell proliferation selectively and the potent inhibition of tumor growth induced by cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact caused by their ability to selectively kill human cells versus rodent cells. This paper reviews such evidence and discusses experimental approaches that could be used to reveal the cancer therapeutic potential of cardiac glycosides in preclinical studies.


Sign in / Sign up

Export Citation Format

Share Document