Colloidal assembly by ice templating

2016 ◽  
Vol 186 ◽  
pp. 61-76 ◽  
Author(s):  
Guruswamy Kumaraswamy ◽  
Bipul Biswas ◽  
Chandan Kumar Choudhury

We investigate ice templating of aqueous dispersions of polymer coated colloids and crosslinkers, at particle concentrations far below that required to form percolated monoliths. Freezing the aqueous dispersions forces the particles into close proximity to form clusters, that are held together as the polymer chains coating the particles are crosslinked. We observe that, with an increase in the particle concentration from about 106 to 108 particles per ml, there is a transition from isolated single particles to increasingly larger clusters. In this concentration range, most of the colloidal clusters formed are linear or sheet like particle aggregates. Remarkably, the cluster size distribution for clusters smaller than about 30 particles, as well as the size distribution of linear clusters, is only weakly dependent on the dispersion concentration in the range that we investigate. We demonstrate that the main features of cluster formation are captured by kinetic simulations that do not consider hydrodynamics or instabilities at the growing ice front due to particle concentration gradients. Thus, clustering of colloidal particles by ice templating dilute dispersions appears to be governed only by particle exclusion by the growing ice crystals that leads to their accumulation at ice crystal boundaries.

2014 ◽  
Vol 742 ◽  
pp. 495-519 ◽  
Author(s):  
Leonardo Espín ◽  
Satish Kumar

AbstractWhen a thin film of a colloidal suspension flows over a substrate, uneven distribution of the suspended particles can lead to an uneven coating. Motivated by this phenomenon, we analyse the flow of perfectly wetting films and droplets of colloidal suspensions down an inclined plane. Lubrication theory and the rapid-vertical-diffusion approximation are used to derive a coupled pair of one-dimensional partial differential equations describing the evolution of the interface height and particle concentration. Precursor films are assumed to be present, the colloidal particles are taken to be hard spheres, and particle and liquid dynamics are coupled through a concentration- dependent viscosity and diffusivity. We find that for sufficiently high Péclet numbers, even small initial concentration inhomogeneities produce viscosity gradients that cause the film or droplet front to evolve continuously in time instead of travelling without changing shape as happens in the absence of colloidal particles. At high enough particle concentrations, particle diffusion can lead to the formation of long-lived secondary flow fronts in films. Our results suggest that particle concentration gradients can have a dramatic influence on interface evolution in flowing films and droplets, a finding which may be relevant for understanding the onset of patterns that are observed experimentally.


2021 ◽  
Vol 54 (5) ◽  
Author(s):  
Debasis Sen ◽  
Ashwani Kumar ◽  
Avik Das ◽  
Jitendra Bahadur

A new method to estimate the size distribution of non-interacting colloidal particles from small-angle scattering data is presented. The method demonstrates that the distribution can be efficiently retrieved through features of the scattering data when plotted in the Porod representation, thus avoiding the standard fitting procedure of nonlinear least squares. The present approach is elaborated using log-normal and Weibull distributions. The method can differentiate whether the distribution actually follows the functionality of either of these two distributions, unlike the standard fitting procedure which requires a prior assumption of the functionality of the distribution. After validation with various simulated scattering profiles, the formalism is used to estimate the size distribution from experimental small-angle X-ray scattering data from two different dilute dispersions of silica. At present the method is limited to monomodal distributions of dilute spherical particles only.


2021 ◽  
Author(s):  
Fumio Nakazawa ◽  
Kumiko Goto-Azuma

<p>The storage of melted snow and/or ice samples from snow pits and ice cores in a refrigerator for long durations may be limited by an increase in particle concentration caused by microbial growth after approximately 1–2 weeks. In this study, we examined an ultraviolet (UV) disinfection method for the storage of melted snow and/or ice samples. Surface snow obtained from Glacier No. 31 in the Suntar-Khayata Range, eastern Siberia, Russia was divided into two portions for UV treatment and untreated controls. Particle concentrations in the samples were measured using a Coulter counter (Multisizer 4e; Beckman Coulter, USA). Whereas the particle concentration in untreated samples increased, no obvious increase was observed over 53 days in the samples subjected to UV treatment. In addition, the original particle concentrations were unaffected by UV treatment. These findings indicate that the antimicrobial effect of UV radiation is effective for long-term sample storage of melted water samples. A detailed analysis of the particle size distribution for untreated samples indicated that particles of 0.7–1.2 µm appeared within the first 7–14 days. Measurements using a viable particle counter (XL-10BT2 and XL-28A1; RION Co. Ltd., Japan) confirmed that these were biological particles, suggesting that microbial growth occurs during this period. Subsequently, the particles shifted to a smaller size and a higher concentration, suggesting that the decomposition of microorganisms occurred in the water samples. Therefore, the size distribution of particles in untreated samples reflected the growth and decomposition of microorganisms over time.</p>


2013 ◽  
Vol 734 ◽  
pp. 219-252 ◽  
Author(s):  
Arun Ramachandran

AbstractA two-time-scale perturbation expansion is used to derive a cross-section-averaged convection–dispersion equation for the particle distribution in the flow of a concentrated suspension of neutrally buoyant, non-colloidal particles through a straight, circular tube. Since the cross-streamline motion of particles is governed by shear-induced migration, the Taylor-dispersion coefficient ${\mathscr{D}}_{eff} $ scales as ${U}^{\prime } {R}^{3} / {a}^{2} $, ${U}^{\prime } $, $R$ and $a$ being the characteristic velocity scale, the tube radius and the particle radius, respectively. Here ${\mathscr{D}}_{eff} $ is found to decrease monotonically with an increase in the particle concentration. The linear dependence of ${\mathscr{D}}_{eff} $ on ${U}^{\prime } $ implies that changes in the cross-section averaged axial concentration profile are dependent only on the total axial strain experienced by the suspension. This stipulates that the spatial evolution of a fluctuation in the concentration of particles in the flowing suspension, or the width of the mixing zone between two regions of different concentrations in the tube will be independent of the suspension velocity in the tube. A second interesting feature in particulate dispersion is that the effective velocity of the particulate phase is concentration-dependent, which, by itself (i.e. without considering Taylor dispersion), can produce either sharpening or relaxation of concentration gradients. In particular, shocks with positive concentration gradients along the flow direction can asymptotically evolve into time-independent distributions in an appropriately chosen frame of reference, and concentration pulses relax asymmetrically. These trends are contrasted with those expected from the classical problem of Taylor dispersion of a passive tracer in the same geometry. The results in this paper are especially relevant for suspension flows through microfluidic geometries, where the induction lengths for shear-induced migration are short.


2005 ◽  
Author(s):  
P. Bahukudumbi ◽  
Michael A. Bevan ◽  
Ali Beskok

Clustering of colloidal particles near an electrode surface during and after electrophoretic deposition has been reported in the literature [1, 2, 3, 4]. The aggregation of colloidal particles has made the precise assembly of two and three dimensional colloidal crystals possible. In this paper, we demonstrate the use of external electric fields to sensitively tune the interactions between colloidal particles to form ordered structures. The directed assembly of colloidal particles on patterned electrode surfaces is also investigated as a means of building three-dimensional nanostructures. Finally, a new method to map potential energy landscapes of templated substrates using a diffusing colloidal particle as a sensitive local energy probe is described.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 558 ◽  
Author(s):  
Alexander S. Abyzov ◽  
Jürn W. P. Schmelzer ◽  
Vladimir M. Fokin ◽  
Edgar D. Zanotto

Crystal nucleation can be described by a set of kinetic equations that appropriately account for both the thermodynamic and kinetic factors governing this process. The mathematical analysis of this set of equations allows one to formulate analytical expressions for the basic characteristics of nucleation, i.e., the steady-state nucleation rate and the steady-state cluster-size distribution. These two quantities depend on the work of formation, Δ G ( n ) = − n Δ μ + γ n 2 / 3 , of crystal clusters of size n and, in particular, on the work of critical cluster formation, Δ G ( n c ) . The first term in the expression for Δ G ( n ) describes changes in the bulk contributions (expressed by the chemical potential difference, Δ μ ) to the Gibbs free energy caused by cluster formation, whereas the second one reflects surface contributions (expressed by the surface tension, σ : γ = Ω d 0 2 σ , Ω = 4 π ( 3 / 4 π ) 2 / 3 , where d 0 is a parameter describing the size of the particles in the liquid undergoing crystallization), n is the number of particles (atoms or molecules) in a crystallite, and n = n c defines the size of the critical crystallite, corresponding to the maximum (in general, a saddle point) of the Gibbs free energy, G. The work of cluster formation is commonly identified with the difference between the Gibbs free energy of a system containing a cluster with n particles and the homogeneous initial state. For the formation of a “cluster” of size n = 1 , no work is required. However, the commonly used relation for Δ G ( n ) given above leads to a finite value for n = 1 . By this reason, for a correct determination of the work of cluster formation, a self-consistency correction should be introduced employing instead of Δ G ( n ) an expression of the form Δ G ˜ ( n ) = Δ G ( n ) − Δ G ( 1 ) . Such self-consistency correction is usually omitted assuming that the inequality Δ G ( n ) ≫ Δ G ( 1 ) holds. In the present paper, we show that: (i) This inequality is frequently not fulfilled in crystal nucleation processes. (ii) The form and the results of the numerical solution of the set of kinetic equations are not affected by self-consistency corrections. However, (iii) the predictions of the analytical relations for the steady-state nucleation rate and the steady-state cluster-size distribution differ considerably in dependence of whether such correction is introduced or not. In particular, neglecting the self-consistency correction overestimates the work of critical cluster formation and leads, consequently, to far too low theoretical values for the steady-state nucleation rates. For the system studied here as a typical example (lithium disilicate, Li 2 O · 2 SiO 2 ), the resulting deviations from the correct values may reach 20 orders of magnitude. Consequently, neglecting self-consistency corrections may result in severe errors in the interpretation of experimental data if, as it is usually done, the analytical relations for the steady-state nucleation rate or the steady-state cluster-size distribution are employed for their determination.


2007 ◽  
Vol 7 (11) ◽  
pp. 3995-3999
Author(s):  
Jongman Lee ◽  
Oh-Sun Kwon ◽  
Kwanwoo Shin ◽  
Ju-Myung Song ◽  
Joon-Seop Kim ◽  
...  

A significant amount of polystyrene sulfonated acid (PSSA) and poly(styrene-ran-acrylic acid) (PSAA) random copolymer can be adsorbed by dispersion of PS particles via a swelling-quenching process. A THF-water mixed solvent was used in the swelling process and a large amount of pure water was used, to give a low concentration of THF% in quenching process. Our results showed that functional PSSA groups were randomly and tightly adsorbed to the PS particles. When the mol.% of charged segments was increased, the progressive adsorption of PSSA chains to the PS particles leads to an increase in the electrophoretic mobility and zeta-potential of aqueous dispersions. Thus, we were able to obtain well-distributed surface charge density on the PS particles.


Soft Matter ◽  
2015 ◽  
Vol 11 (20) ◽  
pp. 4011-4021 ◽  
Author(s):  
Ryan Szparaga ◽  
Clifford E. Woodward ◽  
Jan Forsman

We use a combination of simulations and a simple theoretical approach to investigate interactions between neutral conducting surfaces, immersed in an electrolyte solution.


Sign in / Sign up

Export Citation Format

Share Document