Development of subnanomolar radiofluorinated (2-pyrrolidin-1-yl)imidazo[1,2-b]pyridazine pan-Trk inhibitors as candidate PET imaging probes

MedChemComm ◽  
2015 ◽  
Vol 6 (12) ◽  
pp. 2184-2193 ◽  
Author(s):  
Vadim Bernard-Gauthier ◽  
Justin J. Bailey ◽  
Arturo Aliaga ◽  
Alexey Kostikov ◽  
Pedro Rosa-Neto ◽  
...  

Dysregulation of tropomyosin receptor kinases (TrkA/B/C) expression and signalling is recognized as a hallmark of numerous neurodegenerative diseases including Parkinson's, Huntington's and Alzheimer's disease.

2014 ◽  
Vol 43 (19) ◽  
pp. 6683-6691 ◽  
Author(s):  
Lin Zhu ◽  
Karl Ploessl ◽  
Hank F. Kung

Amyvid/PET imaging of a living brain detects β-amyloid plaque deposition, a risk factor for developing Alzheimer's disease.


2020 ◽  
Vol 6 (5) ◽  
pp. 1-7
Author(s):  
Chinonye A Maduagwuna ◽  

Study background: Chronic neuroinflammation is a common emerging hallmark of several neurodegenerative diseases. Alzheimer’s Disease (AD) is the most common cause of dementia among the elderly and is characterized by loss of memory and other cognitive functions.


2018 ◽  
Vol 15 (13) ◽  
pp. 1267-1275 ◽  
Author(s):  
F.E. Reesink ◽  
D. Vállez García ◽  
C.A. Sánchez-Catasús ◽  
D.E. Peretti ◽  
A.T. Willemsen ◽  
...  

Background: We describe the phenomenon of crossed cerebellar diaschisis (CCD) in four subjects diagnosed with Alzheimer’s disease (AD) according to the National Institute on Aging - Alzheimer Association (NIA-AA) criteria, in combination with 18F-FDG PET and 11C-PiB PET imaging. Methods: 18F-FDG PET showed a pattern of cerebral metabolism with relative decrease most prominent in the frontal-parietal cortex of the left hemisphere and crossed hypometabolism of the right cerebellum. 11C-PiB PET showed symmetrical amyloid accumulation, but a lower relative tracer delivery (a surrogate of relative cerebral blood flow) in the left hemisphere. CCD is the phenomenon of unilateral cerebellar hypometabolism as a remote effect of supratentorial dysfunction of the brain in the contralateral hemisphere. The mechanism implies the involvement of the cortico-ponto-cerebellar fibers. The pathophysiology is thought to have a functional or reversible basis but can also reflect in secondary morphologic change. CCD is a well-recognized phenomenon, since the development of new imaging techniques, although scarcely described in neurodegenerative dementias. Results: To our knowledge this is the first report describing CCD in AD subjects with documentation of both 18F-FDG PET and 11C-PiB PET imaging. CCD in our subjects was explained on a functional basis due to neurodegenerative pathology in the left hemisphere. There was no structural lesion and the symmetric amyloid accumulation did not correspond with the unilateral metabolic impairment. Conclusion: This suggests that CCD might be caused by non-amyloid neurodegeneration. The pathophysiological mechanism, clinical relevance and therapeutic implications of CCD and the role of the cerebellum in AD need further investigation.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Nesrine S. El Sayed ◽  
Mamdooh H. Ghoneum

Background. Many neurodegenerative diseases such as Alzheimer’s disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective. We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer’s disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. Methods. Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. Results. Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions. Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.


2021 ◽  
Vol 174 ◽  
pp. 109740
Author(s):  
Ji-Kui Xie ◽  
Xing-Xing Zhu ◽  
Kai-Xuan Wang ◽  
Shi-Cun Wang ◽  
Qiang Xie

Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 371
Author(s):  
Patrycja Pawlik ◽  
Katarzyna Błochowiak

Many neurodegenerative diseases present with progressive neuronal degeneration, which can lead to cognitive and motor impairment. Early screening and diagnosis of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are necessary to begin treatment before the onset of clinical symptoms and slow down the progression of the disease. Biomarkers have shown great potential as a diagnostic tool in the early diagnosis of many diseases, including AD and PD. However, screening for these biomarkers usually includes invasive, complex and expensive methods such as cerebrospinal fluid (CSF) sampling through a lumbar puncture. Researchers are continuously seeking to find a simpler and more reliable diagnostic tool that would be less invasive than CSF sampling. Saliva has been studied as a potential biological fluid that could be used in the diagnosis and early screening of neurodegenerative diseases. This review aims to provide an insight into the current literature concerning salivary biomarkers used in the diagnosis of AD and PD. The most commonly studied salivary biomarkers in AD are β-amyloid1-42/1-40 and TAU protein, as well as α-synuclein and protein deglycase (DJ-1) in PD. Studies continue to be conducted on this subject and researchers are attempting to find correlations between specific biomarkers and early clinical symptoms, which could be key in creating new treatments for patients before the onset of symptoms.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Smita Eknath Desale ◽  
Subashchandrabose Chinnathambi

AbstractAlzheimer’s disease is one of the neurodegenerative diseases, characterized by the accumulation of abnormal protein deposits, which disrupts signal transduction in neurons and other glia cells. The pathological protein in neurodegenerative diseases, Tau and amyloid-β contribute to the disrupted microglial signaling pathways, actin cytoskeleton, and cellular receptor expression. The important secondary messenger lipids i.e., phosphatidylinositols are largely affected by protein deposits of amyloid-β in Alzheimer’s disease. Phosphatidylinositols are the product of different phosphatidylinositol kinases and the state of phosphorylation at D3, D4, and D5 positions of inositol ring. Phosphatidylinositol 3,4,5-triphosphate (PI 3, 4, 5-P3) involves in phagocytic cup formation, cell polarization, whereas Phosphatidylinositol 4,5-bisphosphate (PI 4, 5-P2)-mediates the process of phagosomes formation and further its fusion with early endosome.. The necessary activation of actin-binding proteins such as Rac, WAVE complex, and ARP2/3 complex for the actin polymerization in the process of phagocytosis, migration is regulated and maintained by PI 3, 4, 5-P3 and PI 4, 5-P2. The ratio and types of fatty acid intake can influence the intracellular secondary lipid messengers along with the cellular content of phaphatidylcholine and phosphatidylethanolamine. The Amyloid-β deposits and extracellular Tau seeds disrupt phosphatidylinositides level and actin cytoskeletal network that hamper microglial-signaling pathways in AD. We hypothesize that being a lipid species intracellular levels of phosphatidylinositol would be regulated by dietary fatty acids. Further we are interested to understand phosphoinositide-based signaling cascades in phagocytosis and actin remodeling.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 12
Author(s):  
Johanna Michael ◽  
Diana Bessa de Sousa ◽  
Justin Conway ◽  
Erick Gonzalez-Labrada ◽  
Rodolphe Obeid ◽  
...  

The leukotriene receptor antagonist Montelukast (MTK) is an approved medication for the treatment of asthma and allergic rhinitis. The existing marketed tablet forms of MTK exhibit inconsistent uptake and bioavailability, which partially explains the presence of a significant proportion of MTK low- and non-responders in the population. Besides that, tablets are suboptimal formulations for patients suffering from dysphagia, for example, seen in patients with neurodegenerative diseases such as Alzheimer’s disease, a disease with increasing interest in repurposing of MTK. This, and the need for an improved bioavailability, triggered us to reformulate MTK. Our aim was to develop a mucoadhesive MTK film with good safety and improved pharmacological features, i.e., an improved bioavailability profile in humans as well as in a mouse model of Alzheimer’s disease. We tested dissolution of the MTK mucoadhesive film and assessed pharmacoexposure and kinetics after acute and chronic oral application in mice. Furthermore, we performed a Phase I analysis in humans, which included a comparison with the marketed tablet form as well as a quantitative analysis of the MTK levels in the cerebrospinal fluid. The novel MTK film demonstrated significantly improved bioavailability compared to the marketed tablet in the clinical Phase 1a study. Furthermore, there were measurable amounts of MTK present in the cerebrospinal fluid (CSF). In mice, MTK was detected in serum and CSF after acute and chronic exposure in a dose-dependent manner. The mucoadhesive film of MTK represents a promising alternative for the tablet delivery. The oral film might lower the non-responder rate in patients with asthma and might be an interesting product for repurposing of MTK in other diseases. As we demonstrate Blood-Brain-Barrier (BBB) penetrance in a preclinical model, as well as in a clinical study, the oral film of MTK might find its use as a therapeutic for acute and chronic neurodegenerative diseases such as dementias and stroke.


Sign in / Sign up

Export Citation Format

Share Document