One-step electrodeposition of CuInxGa1−xSe2 thin films from a mixture system of ionic liquid and ethanol

2015 ◽  
Vol 39 (10) ◽  
pp. 7742-7745 ◽  
Author(s):  
Ye Lian ◽  
Shanshan Ji ◽  
Lei Zhao ◽  
Jie Zhang ◽  
Peixia Yang ◽  
...  

Synthesizing high crystalline quality p-type semiconductor CIGS thin film with a band gap of 1.41 eV by galvanostatic electrodeposition.

2013 ◽  
Vol 690-693 ◽  
pp. 1659-1663
Author(s):  
Hai Fang Zhou ◽  
Xiao Hu Chen

The preparation and characterization of CuInS2 thin films on ITO glass substrates prepared by one-step electrodeposition have been reported. Samples were characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results indicate that CuInS2 is the major phase for the film deposited at -1.0 V, after annealing at 550°C in sulfur atmosphere, and the sample is Cu-rich and p-type semiconductor. Additionally, the energy band gap and carrier concentration for the sample were found to be 1.43 eV and 4.20×1017 cm−3, respectively. Furthermore, the maximum photocurrent density of the sample was found to be -1.15 mA/cm2 under 255 lx illumination, the sample shows the photo-enhancement effect.


2017 ◽  
Vol 5 (10) ◽  
pp. 2524-2530 ◽  
Author(s):  
Ao Liu ◽  
Shengbin Nie ◽  
Guoxia Liu ◽  
Huihui Zhu ◽  
Chundan Zhu ◽  
...  

Solution-processed p-type Cu2O thin films were fabricated via in-situ reaction of CuI film in NaOH solution and their applications in thin-film transistors were successfully demonstrated.


2021 ◽  
Vol 33 (11) ◽  
pp. 2762-2766
Author(s):  
E. Anuja ◽  
R. Thiruneelakandan

In the present work, copper zinc sulphide (CuZnS2) thin films with and without complexing agents using glass plate as substrate were prepared. Chemical bath deposition method was employed to deposit the thin films. Powder X-ray diffraction (PXRD) patterns of the prepared films indicate the crystalline nature of CuZnS2 with cubic phases. The SEM and AFM images illustrate that the deposited films were highly influenced on the polyhedral morphology by the complexing agents. The influence of complexing agents on absorbance and band gap of the CuZnS2 thin films were characterized using UV-Vis absorption studies. Hall effect measurements indicate the CuZnS2 thin film without surfactant belongs to p-type semiconductor and become n-type after adding the complexing agents EDTA and Leishman stain. From the I-V curve, all the samples having slow conducting nature was found for changing the voltage with the current from -32 nA to +30 nA using solar stimulator.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. N. Amalina ◽  
N. A. Rasheid ◽  
M. Rusop

In our experiments, we provide a new approach for depositing CuI (inorganic compound) thin films using the mister atomizer technique. The CuI solution was sprayed into fine droplets using argon as a carrier gas at different solution concentrations. The solution sprayed was 50 ml for all samples with substrate temperature constant at 50°C during the deposition process. The result shows that the CuI thin film properties strongly depend on its precursor concentration. The structural properties were characterized by XRD with strong (111) orientation shows for all the CuI thin films. FESEM images revealed that all the CuI thin films deposited were uniform with the existence of nanostructured CuI particle. The EDX measurement confirms the existence of Cu:I in the films. The nanostructured CuI will improve the penetration of p-type between the mesoporous matrix of TiO2thin film. Promising conductivity value of about 10° S cm−1was obtained for CuI thin films deposited by this new deposition method. Low transmittance of below 50% was observed for all CuI thin films. The band gap energy obtained here was between 2.82 eV and 2.92 eV which is much smaller than the reported band gap which is 3.1 eV.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Rongfeng Guan ◽  
Liu Cao ◽  
Qian Sun ◽  
Yuebin Cao

CuInS2thin films were prepared onto indium tin oxide (ITO) substrates by sulfurization of electrodeposited CuxInySzprecursor films under S atmosphere. The influences of deposition potential, Cu2+/In3+ratio, sulfurization temperature, and sulfur content on the CuInS2thin films were investigated. Phases and structures were characterized by powder X-ray diffraction and Raman spectroscopy; surface morphology was characterized by Scanning Electron Microscopy; optical and electrical properties were characterized by UV-Vis absorption and Mott-Schottky curves, respectively. As a result, the optimal well-crystallized CuInS2films preparation parameters were determined to be deposition potential of −0.8 V, Cu2+/In3+ratio of 1.4, sulfur content of 1 g, and the sulfurization temperature of 550°C for 1 h; CuInS2thin films prepared by one-step electrodeposition present the p-type semiconductor, with thickness about 4-5 μm and their optical band gaps in the range of 1.53~1.55 eV.


2014 ◽  
Vol 1670 ◽  
Author(s):  
Qinglei Ma ◽  
Hrachya Kyureghian ◽  
Joel D. Banninga ◽  
N. J. Ianno

ABSTRACTAn excellent candidate for an earth abundant absorber material is WSe2 which can be directly grown as a p-type semiconductor with a band gap near 1.4 eV. In this work we present the structural, optical, and electrical properties of thin film WSe2 grown via the selenization of sputter deposited tungsten films. We will show that highly textured films with an optical band gap in range of 1.4 eV, and absorption coefficients greater than 105/cm across the visible spectrum can be easily achieved. In addition we will present Hall Effect and carrier density measurements as well, where will show densities in the 1017cm-3 range and p-type Hall mobilities greater than 10 cm2/V-s range can be obtained. We employ these results to numerically simulate solar cells based on this material, where we will show efficiencies greater than 20% are possible.


2004 ◽  
Vol 836 ◽  
Author(s):  
K. Bindu ◽  
M. T. S. Nair ◽  
P. K. Nair

ABSTRACTSelenium thin films (350 nm) deposited from a 0.01 M solution of Na2SeSO3 of pH 4.5 maintained at 10 °C for 13 h, have been used as a source of selenium vapour for reaction with vacuum deposited Ag thin film on chemically deposited Sb2S3+Ag layers. When a stack of Sb2S3+Ag is heated in contact with Se film, AgSbSe2 is formed through solid state reaction of Sb2S3 and Ag2Se. The latter is formed at 80°C through the reaction of Ag-film in Se-vapour. This thin film is photoconductive and p-type. The optical band gap is nearly 1 eV and dark conductivity, 10-3 Ω-1cm-1. This thin film has been incorporated to form a photovoltaic structure, SnO2:F-(n)CdS:In-(i)Sb2S3-(p)AgSbSe2-silver print. Voc> 400 mV and Jsc>12 mA/cm2 have been observed in this under an illumination intensity of 1 kWm-2.


1995 ◽  
Vol 403 ◽  
Author(s):  
T. S. Hayes ◽  
F. T. Ray ◽  
K. P. Trumble ◽  
E. P. Kvam

AbstractA refined thernodynamic analysis of the reaction between molen Al and SiC is presented. The calculations indicate much higher Si concentrations for saturation with respect to AkC 3 formation than previously reported. Preliminary microstructural studies confirm the formation of interfacial A14C3 for pure Al thin films on SiC reacted at 9000C. The implications of the calculations and experimental observations for the production of ohmic contacts to p-type SiC are discussed.


2013 ◽  
Vol 764 ◽  
pp. 266-283 ◽  
Author(s):  
Ibram Ganesh ◽  
Rekha Dom ◽  
P.H. Borse ◽  
Ibram Annapoorna ◽  
G. Padmanabham ◽  
...  

Different amounts of Fe, Co, Ni and Cu-doped TiO2 thin films were prepared on fluorine doped tin oxide (FTO) coated soda-lime glass substrates by following a conventional sol-gel dip-coating technique followed by heat treatment at 550 and 600°C for 30 min. These thin films were characterized for photo-current, chronoamperometry and band-gap energy values. The chemical compositions of metals-doped TiO2 thin films on FTO glass substrates were confirmed by XPS spectroscopic study. The metal-ions doped TiO2 thin films had a thickness of <200 nm="" optical="" transparency="" of="">80%, band-gap energy of >3.6 eV, and a direct band-to-band energy transition. The photoelectrochemical (PEC) studies revealed that all the metal-ions doped TiO2 thin films exhibit n-type semi-conducting behavior with a quite stable chronoamperometry and photo-currents that increase with the increase of applied voltage but decrease with the dopant metal-ion concentration in the thin film. Furthermore, these thin films exhibited flat-band potentials amenable to water oxidation reaction in a PEC cell. The 0.5 wt.% Cu-doped TiO2 thin film electrode exhibited an highest incident photon-to-current conversion efficiency (IPCE) of about 21%.


Sign in / Sign up

Export Citation Format

Share Document