scholarly journals Effects of Preparation Conditions on the CuInS2Films Prepared by One-Step Electrodeposition Method

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Rongfeng Guan ◽  
Liu Cao ◽  
Qian Sun ◽  
Yuebin Cao

CuInS2thin films were prepared onto indium tin oxide (ITO) substrates by sulfurization of electrodeposited CuxInySzprecursor films under S atmosphere. The influences of deposition potential, Cu2+/In3+ratio, sulfurization temperature, and sulfur content on the CuInS2thin films were investigated. Phases and structures were characterized by powder X-ray diffraction and Raman spectroscopy; surface morphology was characterized by Scanning Electron Microscopy; optical and electrical properties were characterized by UV-Vis absorption and Mott-Schottky curves, respectively. As a result, the optimal well-crystallized CuInS2films preparation parameters were determined to be deposition potential of −0.8 V, Cu2+/In3+ratio of 1.4, sulfur content of 1 g, and the sulfurization temperature of 550°C for 1 h; CuInS2thin films prepared by one-step electrodeposition present the p-type semiconductor, with thickness about 4-5 μm and their optical band gaps in the range of 1.53~1.55 eV.

2013 ◽  
Vol 690-693 ◽  
pp. 1659-1663
Author(s):  
Hai Fang Zhou ◽  
Xiao Hu Chen

The preparation and characterization of CuInS2 thin films on ITO glass substrates prepared by one-step electrodeposition have been reported. Samples were characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results indicate that CuInS2 is the major phase for the film deposited at -1.0 V, after annealing at 550°C in sulfur atmosphere, and the sample is Cu-rich and p-type semiconductor. Additionally, the energy band gap and carrier concentration for the sample were found to be 1.43 eV and 4.20×1017 cm−3, respectively. Furthermore, the maximum photocurrent density of the sample was found to be -1.15 mA/cm2 under 255 lx illumination, the sample shows the photo-enhancement effect.


2018 ◽  
Vol 24 (8) ◽  
pp. 5866-5871 ◽  
Author(s):  
G Balakrishnan ◽  
J. S. Ram Vinoba ◽  
R Rishaban ◽  
S Nathiya ◽  
O. S. Nirmal Ghosh

Nickel oxide (NiO) thin films were deposited on glass substrates using the RF magnetron sputtering technique at room temperature. The Argon and oxygen flow rates were kept constant at 10 sccm and 5 sccm respectively. The films were annealed at various temperatures (RT-300 °C) and its influence on the microstructural, optical and electrical properties were investigated. The X-ray diffraction (XRD) investigation of NiO films indicated the polycrystallinity of the films with the (111), (200) and (220) reflections corresponding to the cubic structure of NiO films. The crystallite size of NiO films was in the range ~4–14 nm. The transmittance of the films increased from 20 to 75% with increasing annealed temperature. The optical band gap of the films was 3.6–3.75 eV range for the as-deposited and annealed films. The Hall effect studies indicated the p-type conductivity of films and the film annealed at 300 °C showed higher carrier concentration (N), high conductivity (σ) and high mobility (μ) compared to other films. These NiO films can be used as a P-type semiconductor material in the devices require transparent conducting films.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Hoai Phuong Pham ◽  
Thanh Giang Le Thuy ◽  
Quang Trung Tran ◽  
Hoang Hung Nguyen ◽  
Huynh Tran My Hoa ◽  
...  

Crystalline structure and optoelectrical properties of silver-doped tin monoxide thin films with different dopant concentrations prepared by DC magnetron sputtering are investigated. The X-ray diffraction patterns reveal that the tetragonal SnO phase exhibits preferred orientations along (101) and (110) planes. Our results indicate that replacing Sn2+ in the SnO lattice with Ag+ ions produces smaller-sized crystallites, which may lead to enhanced carrier scattering at grain boundaries. This causes a deterioration in the carrier mobility, even though the carrier concentration improves by two orders of magnitude due to doping. In addition, the Ag-doped SnO thin films show a p-type semiconductor behavior, with a direct optical gap and decreasing transmittance with increasing Ag dopant concentration.


2015 ◽  
Vol 39 (10) ◽  
pp. 7742-7745 ◽  
Author(s):  
Ye Lian ◽  
Shanshan Ji ◽  
Lei Zhao ◽  
Jie Zhang ◽  
Peixia Yang ◽  
...  

Synthesizing high crystalline quality p-type semiconductor CIGS thin film with a band gap of 1.41 eV by galvanostatic electrodeposition.


2017 ◽  
Vol 21 (1) ◽  
pp. 19 ◽  
Author(s):  
K Anuar ◽  
Z Zainal ◽  
N Saravanan ◽  
A.R Kartini

Nickel selenide thin films have been potentiostatically electrodeposited on titanium substrate at room temperature from aqueous solution containing Ni-EDTA and Na2SeO3. Various deposition potentials were attempted in order to determine the optimum electrodeposition potential. The films were characterised using x-ray diffraction analysis (XRD) and the photoactivity of the electrosynthesised films were studied using linear sweep voltammetry (LSV). The band-gap energy was determined using UV-visible spectroscopy. The XRD analysis indicated the formationof polycrystalline Ni3Se2. The film exhibited p-type semiconductor behaviour with good photosensitivity. The bandgap energy (Eg) was about 1.4eV.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 636 ◽  
Author(s):  
Chien-Chen Diao ◽  
Chun-Yuan Huang ◽  
Cheng-Fu Yang ◽  
Chia-Ching Wu

In this study, a p-type 2 at% lithium-doped nickel oxide (abbreviation L2NiO) solution was prepared using Ni(NO3)2·6H2O, and LiNO3·L2NiO thin films were deposited using an atomizer by spraying the L2NiO solution onto a glass substrate. The sprayed specimen was heated at a low temperature (140 °C) and annealed at different high temperatures and times. This method can reduce the evaporation ratio of the L2NiO solution, affording high-order nucleating points on the substrate. The L2NiO thin films were characterized by X-ray diffraction, scanning electron microscopy, UV–visible spectroscopy, and electrical properties. The figure of merit (FOM) for L2NiO thin films was calculated by Haacke’s formula, and the maximum value was found to be 5.3 × 10−6 Ω−1. FOM results revealed that the L2NiO thin films annealed at 600 °C for 3 h exhibited satisfactory optical and electrical characteristics for photoelectric device applications. Finally, a transparent heterojunction diode was successfully prepared using the L2NiO/indium tin oxide (ITO) structure. The current–voltage characteristics revealed that the transparent heterojunction diode exhibited rectifying properties, with a turn-on voltage of 1.04 V, a leakage current of 1.09 × 10−4 A/cm2 (at 1.1 V), and an ideality factor of n = 0.46.


Author(s):  
T. Joseph Sahaya Anand ◽  
Rajes K. M. Rajan ◽  
Md Radzai Said ◽  
Lau Kok Tee

Thin films of nickel chalcogenide, NiX2 (X= Te, Se) have been electrosynthesized on indium-tin-oxide (ITO) coated glass substrates. The films were characterized for their structural, morphological and compositional characteristics. Consisting of transition metals and chalcogenides (S, Se and Te), they show promising solar absorbent properties such as semiconducting band gap, well adhesion to substrate and good conversion with better cost-effective. Cyclic voltammetry experiments have been done prior to electrodeposition in order to get the electrodeposition potential range where the observable reduction range is between -0.9-(-1.1) V. Their optical and semiconducting parameters were also analysed in order to determine the suitability of the thin films for photoelectrochemical (PEC) / solar cell applications. Structural analysis via X-ray diffraction (XRD) analysis reveals that the films are polycrystalline in nature. Scanning electron microscope (SEM) studies reveals that the films were adherent to the substrate with uniform and pin-hole free. Compositional analysis via energy dispersive X-ray (EDX) technique confirms the presence of Ni, Te, and Se elements in the films. The optical studies show that the films are of direct bandgap. Results on the semiconductor parameters analysis of the films showed that the nature of the Mott-Schottky plots indicates that the films obtained are of p-type material.


2011 ◽  
Vol 121-126 ◽  
pp. 1526-1529
Author(s):  
Ke Gao Liu ◽  
Jing Li

Bulk Fe4Sb12 and Fe3CoSb12 were prepared by sintering at 600 °C. The phases of samples were analyzed by X-ray diffraction and their thermoelectric properties were tested by electric constant instrument and laser thermal constant instrument. Experimental results show that, the major phases of bulk samples are skutterudite with impurity phase FeSb2. The electric resistivities of the samples increase with temperature rising at 100~500 °C. The bulk samples are P-type semiconductor materials. The Seebeck coefficients of the bulk Fe4Sb12 are higher than those of bulk Fe3CoSb12 samples at 100~200 °C but lower at 300~500 °C. The power factor of the bulk Fe4Sb12 samples decreases with temperature rising while that of bulk Fe3CoSb12 samples increases with temperature rising at 100~500 °C. The thermal conductivities of the bulk Fe4Sb12 samples are relatively higher than those of and Fe3CoSb12, which maximum value is up to 0.0974 Wm-1K-1. The ZT value of bulk Fe3CoSb12 increases with temperature rising at 100~500 °C, the maximum value is up to 0.031.The ZT values of the bulk Fe4Sb12 samples are higher than those of bulk Fe3CoSb12 at 100~300 °C while lower at 400~500 °C.


2006 ◽  
Vol 514-516 ◽  
pp. 1155-1160 ◽  
Author(s):  
Talaat Moussa Hammad

Sol gel indium tin oxide thin films (In: Sn = 90:10) were prepared by the sol-gel dipcoating process on silicon buffer substrate. The precursor solution was prepared by mixing SnCl2.2H2O and InCl3 dissolved in ethanol and acetic acid. The crystalline structure and grain orientation of ITO films were determined by X-ray diffraction. The surface morphology of the films was characterized by scanning electron microscope (SEM). Optical transmission and reflectance spectra of the films were analyzed by using a UV-visible spectrophotometer. The transport properties of majority charge carriers for these films were studied by Hall measurement. ITO thin film with electrical resistivity of 7.6 ×10-3 3.cm, Hall mobility of approximately 2 cm2(Vs)-1 and free carrier concentration of approximately 4.2 ×1020 cm-3 are obtained for films 100 nm thick films. The I-V curve measurement showed typical I-V characteristic behavior of sol gel ITO thin films.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


Sign in / Sign up

Export Citation Format

Share Document