Electrodeposition and Properties of CuInS2 Thin Films

2013 ◽  
Vol 690-693 ◽  
pp. 1659-1663
Author(s):  
Hai Fang Zhou ◽  
Xiao Hu Chen

The preparation and characterization of CuInS2 thin films on ITO glass substrates prepared by one-step electrodeposition have been reported. Samples were characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results indicate that CuInS2 is the major phase for the film deposited at -1.0 V, after annealing at 550°C in sulfur atmosphere, and the sample is Cu-rich and p-type semiconductor. Additionally, the energy band gap and carrier concentration for the sample were found to be 1.43 eV and 4.20×1017 cm−3, respectively. Furthermore, the maximum photocurrent density of the sample was found to be -1.15 mA/cm2 under 255 lx illumination, the sample shows the photo-enhancement effect.

2018 ◽  
Vol 24 (8) ◽  
pp. 5866-5871 ◽  
Author(s):  
G Balakrishnan ◽  
J. S. Ram Vinoba ◽  
R Rishaban ◽  
S Nathiya ◽  
O. S. Nirmal Ghosh

Nickel oxide (NiO) thin films were deposited on glass substrates using the RF magnetron sputtering technique at room temperature. The Argon and oxygen flow rates were kept constant at 10 sccm and 5 sccm respectively. The films were annealed at various temperatures (RT-300 °C) and its influence on the microstructural, optical and electrical properties were investigated. The X-ray diffraction (XRD) investigation of NiO films indicated the polycrystallinity of the films with the (111), (200) and (220) reflections corresponding to the cubic structure of NiO films. The crystallite size of NiO films was in the range ~4–14 nm. The transmittance of the films increased from 20 to 75% with increasing annealed temperature. The optical band gap of the films was 3.6–3.75 eV range for the as-deposited and annealed films. The Hall effect studies indicated the p-type conductivity of films and the film annealed at 300 °C showed higher carrier concentration (N), high conductivity (σ) and high mobility (μ) compared to other films. These NiO films can be used as a P-type semiconductor material in the devices require transparent conducting films.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Rongfeng Guan ◽  
Liu Cao ◽  
Qian Sun ◽  
Yuebin Cao

CuInS2thin films were prepared onto indium tin oxide (ITO) substrates by sulfurization of electrodeposited CuxInySzprecursor films under S atmosphere. The influences of deposition potential, Cu2+/In3+ratio, sulfurization temperature, and sulfur content on the CuInS2thin films were investigated. Phases and structures were characterized by powder X-ray diffraction and Raman spectroscopy; surface morphology was characterized by Scanning Electron Microscopy; optical and electrical properties were characterized by UV-Vis absorption and Mott-Schottky curves, respectively. As a result, the optimal well-crystallized CuInS2films preparation parameters were determined to be deposition potential of −0.8 V, Cu2+/In3+ratio of 1.4, sulfur content of 1 g, and the sulfurization temperature of 550°C for 1 h; CuInS2thin films prepared by one-step electrodeposition present the p-type semiconductor, with thickness about 4-5 μm and their optical band gaps in the range of 1.53~1.55 eV.


2020 ◽  
Vol 10 (5) ◽  
pp. 6161-6164
Author(s):  
S. M. Ho

Ternary compounds such as Cu4SnS4 thin films can be deposited onto glass substrates by various deposition methods: electrodeposition, chemical bath deposition, successive ionic layer adsorption and reaction, and evaporation techniques. Cu4SnS4 films could be used in solar cell applications because of their suitable band gap and large absorption coefficient. This paper reviews previous researches on Cu4SnS4 thin films. X-ray diffraction showed that the obtained films are orthorhombic in structure and polycrystalline in nature. Cu4SnS4 films exhibited p-type electrical conductivity and indicated band gap values in the range of 0.93 to 1.84eV.


2019 ◽  
Vol 12 (25) ◽  
pp. 138-147
Author(s):  
Haidar Jwad Abdul-Ameer Al-Rehamey

Cadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the samples was determined from optical trasmittance spectra. It is observed that the direct band gap energy for as deposited and annealed films are (2.55, 2.45) eV, respectively. The effect of annealing at 250 oC for 1hr in air on optical and photoconductivity of films under various intensity of illuminations (43.81 and 115.12) mW/cm2 was studied. The dark and photocurrents of the annealed films were found to be greater than that of as deposited.


Author(s):  
T. Joseph Sahaya Anand ◽  
Rajes K. M. Rajan ◽  
Md Radzai Said ◽  
Lau Kok Tee

Thin films of nickel chalcogenide, NiX2 (X= Te, Se) have been electrosynthesized on indium-tin-oxide (ITO) coated glass substrates. The films were characterized for their structural, morphological and compositional characteristics. Consisting of transition metals and chalcogenides (S, Se and Te), they show promising solar absorbent properties such as semiconducting band gap, well adhesion to substrate and good conversion with better cost-effective. Cyclic voltammetry experiments have been done prior to electrodeposition in order to get the electrodeposition potential range where the observable reduction range is between -0.9-(-1.1) V. Their optical and semiconducting parameters were also analysed in order to determine the suitability of the thin films for photoelectrochemical (PEC) / solar cell applications. Structural analysis via X-ray diffraction (XRD) analysis reveals that the films are polycrystalline in nature. Scanning electron microscope (SEM) studies reveals that the films were adherent to the substrate with uniform and pin-hole free. Compositional analysis via energy dispersive X-ray (EDX) technique confirms the presence of Ni, Te, and Se elements in the films. The optical studies show that the films are of direct bandgap. Results on the semiconductor parameters analysis of the films showed that the nature of the Mott-Schottky plots indicates that the films obtained are of p-type material.


2021 ◽  
Vol 20 (1) ◽  
pp. 84-93
Author(s):  
Dumitru Rusnac ◽  
◽  
Ion Lungu ◽  
Lidia Ghimpu ◽  
Gleb Colibaba ◽  
...  

Doped (with GaCl 3 ), undoped ZnO and ITO/ZnO:Ga nanostructured thin films are synthesized using the spray pyrolysis method. The doped ZnO thin films are synthesized at the atomic ratio of Ga/Zn added in the starting solution fixed at 1, 2, 3, and 5. Gallium-doped ZnO films synthesized on glass/ITO substrates are annealed at 450C in different environments: vacuum, oxygen, and hydrogen. X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and current–voltage (I–V) measurements are applied to characterize the structural properties, composition, surface morphology, and electrical properties of ZnO:Ga nanostructured thin films. X-ray diffraction analysis shows that ZnO:Ga films deposited on glass substrates have a dense and homogeneous surface with a hexagonal structure. The ZnO:Ga films deposited on glass/ITO substrates are composed of two phases, namely, hexagonal ZnO and cubic ITO. The I–V characteristics show the presence of good ohmic contacts between Al and In metals and ZnO:Ga thin films regardless of the nature of the substrate and the annealing atmosphere.


2014 ◽  
Vol 11 (3) ◽  
pp. 1257-1260
Author(s):  
Baghdad Science Journal

In this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and from 0.096 to 0. 162 eV with increasing of annealing temperature from 343K to 363K, respectively. Hall measurements showed that all the films are p-type.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Khadija Abouabassi ◽  
Lahoucine Atourki ◽  
Andrea Sala ◽  
Mouaad Ouafi ◽  
Lahcen Boulkaddat ◽  
...  

The purpose of this work is to study the influence of the annealing temperature on the structural, morphological, compositional and optical properties of CuSbSe2 thin films electrodeposited in a single step. CuSbSe2 thin films were grown on fluorine-doped tin oxide (FTO)/glass substrates using the aqueous electrodeposition technique, then annealed in a tube furnace under nitrogen at temperatures spanning from 250 to 500 °C. The resulting films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis, Raman spectroscopy and UV-Vis spectrophotometer. The annealing temperature plays a fundamental role on the films structural properties; in the range 250–350 °C the formation of pure CuSbSe2 phase from electrodeposited binary selenides occurs. From 400 to 500 °C, CuSbSe2 undergoes a preferential phase orientation change, as well as the increasing formation of copper-rich phases such as Cu3SbSe3 and Cu3SbSe4 due to the partial decomposition of CuSbSe2 and to the antimony losses.


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


Sign in / Sign up

Export Citation Format

Share Document