Laser-induced forward transfer of high-viscosity silver precursor ink for non-contact printed electronics

RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 77942-77947 ◽  
Author(s):  
Tetsuji Inui ◽  
Rajesh Mandamparambil ◽  
Teppei Araki ◽  
Robert Abbel ◽  
Hirotaka Koga ◽  
...  

Non-contact printing of high-viscosity silver precursor inks was achieved to provide highly conductive lines by a laser-induced forward transfer technique.

2022 ◽  
Vol 148 ◽  
pp. 107795
Author(s):  
Yilin Shan ◽  
Xianmin Zhang ◽  
Gengchao Chen ◽  
Kai Li

2019 ◽  
Vol 125 (12) ◽  
Author(s):  
J. Mikšys ◽  
G. Arutinov ◽  
G. R. B. E. Römer

Abstract Silver nanoparticle inks are among the key functional materials used in printed electronics. Depositing it by laser-induced forward transfer remains a challenging task because the non-linear rheological nature of these inks narrows the range of the laser processing parameters. Understanding, therefore, the influence of the laser parameters on the ejection dynamics and deposition quality is of critical importance. The influence of the laser pulse duration from pico- to nanosecond-laser-induced jet dynamics was investigated using time-resolved shadowgraphy imaging. Jet speed and surface area analyses showed that in the lower laser fluence level range, picosecond pulses induce higher surface area ejections which propagate at higher velocities. As the laser fluence levels were increased, the difference in jet velocity and surface area evolutions narrows. Deposition analysis showed a similar behavior with lower transfer thresholds and larger depositions at lower fluence range when picosecond-laser pulses were used.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 168 ◽  
Author(s):  
David Munoz-Martin ◽  
Yu Chen ◽  
Miguel Morales ◽  
Carlos Molpeceres

Laser-induced forward transfer (LIFT) technique has been used for printing a high viscosity (250 Pa·s) commercial silver paste with micron-size particles (1–4 µm). Volumetric pixels (voxels) transferred using single ps laser pulses are overlapped in order to obtain continuous metallic lines. However, interference problems between successive voxels is a major issue that must be solved before obtaining lines with good morphologies. The effects of the laser pulse energy, thickness of the donor paste film, and distance between successive voxels on the morphology of single voxels and lines are discussed. Due to the high viscosity of the paste, the void in the donor film after a printing event remains, and it negatively affects the physical transfer mechanism of the next laser pulses. When two laser pulses are fired at a short distance, there is no transfer at all. Only when the pulses are separated by a distance long enough to avoid interference but short enough to allow overlapping (≈100 µm), is it possible to print continuous lines in a single step. Finally, the knowledge obtained has allowed the printing of silver lines at high speeds (up to 60 m/s).


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 221 ◽  
Author(s):  
Lars Hecht ◽  
Korbinian Rager ◽  
Martynas Davidonis ◽  
Patricia Weber ◽  
Günter Gauglitz ◽  
...  

Laser induced forward transfer (LIFT) is a flexible digital printing process for maskless, selective pattern transfer, which uses single laser pulses focused through a transparent carrier substrate onto a donor layer to eject a tiny volume of the donor material towards a receiver substrate. Here, we present an advanced method for the high-resolution micro printing of bio-active detection chemicals diluted in a viscous buffer solution by transferring droplets with precisely controllable volumes using blister-actuated LIFT (BA-LIFT). This variant of the LIFT process makes use of an intermediate polyimide layer partially ablated by the laser pulses. The expanding gaseous ablation products lead to blisters in the polyimide and ejection of droplets from the subjacent viscous solution layer. A relative movement of donor and receiver substrates for the transfer of partially overlapping pixels is realized with a custom-made positioning system. Using a specially developed donor ink containing bio-active components presented method allows to transfer droplets with well controllable volumes between 20 fL and 6 pL, which is far more precise than other methods like inkjet or contact printing. The usefulness of the process is demonstrated by locally functionalizing laser-structured nitrocellulose paper-like membranes to form a multiparametric lateral flow test. The recognition zones localized within parallel micro channels exhibit a well-defined and homogeneous color change free of coffee-ring patterns, which is of utmost importance for reliable optical readout in miniature multiparametric test systems.


2006 ◽  
Vol 326-328 ◽  
pp. 1391-1394
Author(s):  
Taik Min Lee ◽  
Tae Goo Kang ◽  
Jeong Soon Yang ◽  
Dong Soo Kim ◽  
Jeong Dai Jo ◽  
...  

This paper presents the design, fabrication, and performance test of a gap adjustable piezoelectrically-actuated DoD(drop-on-demand) molten metal injector for application to the 3D microstructure manufacturing or printed electronics. In the design process, we propose the gap adjustable mechanism of the piezoelectrically-actuated inkjet system to control the volume and velocity of the ejected molten metal droplets. In the experimental process, we fabricate the DoD metal injector and measure the volumes and velocities of the ejected droplets for molten metal as well as pure water to compare the ejecting performance for the different viscosity of ink and the operating temperature of the system.


2017 ◽  
Vol 9 (35) ◽  
pp. 29412-29417 ◽  
Author(s):  
Pol Sopeña ◽  
Javier Arrese ◽  
Sergio González-Torres ◽  
Juan Marcos Fernández-Pradas ◽  
Albert Cirera ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Abhishek Singh Dahiya ◽  
Dhayalan Shakthivel ◽  
Yogeenth Kumaresan ◽  
Ayoub Zumeit ◽  
Adamos Christou ◽  
...  

Abstract The Printed Electronics (PE) is expected to revolutionise the way electronics will be manufactured in the future. Building on the achievements of the traditional printing industry, and the recent advances in flexible electronics and digital technologies, PE may even substitute the conventional silicon-based electronics if the performance of printed devices and circuits can be at par with silicon-based devices. In this regard, the inorganic semiconducting materials-based approaches have opened new avenues as printed nano (e.g. nanowires (NWs), nanoribbons (NRs) etc.), micro (e.g. microwires (MWs)) and chip (e.g. ultra-thin chips (UTCs)) scale structures from these materials have been shown to have performances at par with silicon-based electronics. This paper reviews the developments related to inorganic semiconducting materials based high-performance large area PE, particularly using the two routes i.e. Contact Printing (CP) and Transfer Printing (TP). The detailed survey of these technologies for large area PE onto various unconventional substrates (e.g. plastic, paper etc.) is presented along with some examples of electronic devices and circuit developed with printed NWs, NRs and UTCs. Finally, we discuss the opportunities offered by PE, and the technical challenges and viable solutions for the integration of inorganic functional materials into large areas, 3D layouts for high throughput, and industrial-scale manufacturing using printing technologies.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5567
Author(s):  
Juan José Moreno-Labella ◽  
David Munoz-Martin ◽  
Guillermo Vallejo ◽  
Carlos Molpeceres ◽  
Miguel Morales

Laser-induced forward transfer for high-viscosity—of Pa·s—pastes differ from standard LIFT processes in its dynamics. In most techniques, the transference after setting a great gap does not modify the shape acquired by the fluid, so it stretches until it breaks into droplets. In contrast, there is no transferred material when the gap is bigger than three times the paste thickness in LIFT for high-viscosity pastes, and only a spray is observed on the acceptor using this configuration. In this work, the dynamics of the paste have been studied using a finite-element model in COMSOL Multiphysics, and the behavior of the paste varying the gap between the donor and the acceptor substrates has also been modeled. The paste bursts for great gaps, but it is confined when the acceptor is placed close enough. The obtained simulations have been compared with a previous work, in which the paste structures were photographed. The analysis of the simulations in terms of speed allows for predicting the burst of the paste—spray regime—and the construction of a printability map regarding the gap between the substrates.


Sign in / Sign up

Export Citation Format

Share Document