A multi-functional fluorescent scaffold as a multi-colour probe: design and application in targeted cell imaging

RSC Advances ◽  
2015 ◽  
Vol 5 (101) ◽  
pp. 83361-83367 ◽  
Author(s):  
M. Kesik ◽  
B. Demir ◽  
F. B. Barlas ◽  
C. Geyik ◽  
S. C. Cevher ◽  
...  

A new scaffold material based on a novel targeting strategy has been developed, benefiting from recent progress in the development of tailor-made fluorescent bioprobes for cellular imaging and opening a new viewpoint for further improvements in in vitro and in vivo imaging.

2015 ◽  
Vol 44 (12) ◽  
pp. 5763-5770 ◽  
Author(s):  
Shyamaprosad Goswami ◽  
Krishnendu Aich ◽  
Sangita Das ◽  
Chitrangada Das Mukhopadhyay ◽  
Deblina Sarkar ◽  
...  

A new quinoline based sensor was developed and applied for the selective detection of Cd2+ both in vitro and in vivo.


2019 ◽  
Vol 14 (9) ◽  
pp. 1934578X1987640
Author(s):  
Li-Juan Deng ◽  
Yu-He Lei ◽  
Tsz-Fung Chiu ◽  
Ming Qi ◽  
Hua Gan ◽  
...  

Paeoniflorin (PF) is an important pharmacological component of some Chinese traditional herbal formulas, such as Bai Shao, Chi Shao, and Dan Pi, which have been clinically used for centuries. Although many experimental studies have explored a wide range of pharmacological properties of PF, including anticancer, anti-inflammatory, antioxidant, immunoregulatory, and prevention of insulin resistance, there is no review to describe these reported effects systematically, especially the antitumor effect and the underlying mechanisms. In this review, we summarize the recent progress on the anticancer profiles both in vitro and in vivo of PF. Moreover, we highlight the integrated molecular mechanisms of PF and contemplate its future prospects as a potential anticancer drug.


2020 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Jenny Tam ◽  
Alexander Pilozzi ◽  
Umar Mahmood ◽  
Xudong Huang

The use of fluorescent imaging probes that monitor the activity of proteases that experience an increase in expression and activity in tumors is well established. These probes can be conjugated to nanoparticles of iron oxide, creating a multimodal probe serving as both a magnetic resonance imaging (MRI) agent and an indicator of local protease activity. Previous works describe probes for cathepsin D (CatD) and metalloproteinase-2 (MMP2) protease activity grafted to cross-linked iron oxide nanoparticles (CLIO). Herein, we have synthesized a triply labeled fluorescent iron oxide nanoparticle molecular imaging (MI) probe, including an AF750 substrate concentration reporter along with probes for cathepsin B (CatB) sand MMP2 protease activity. The reporter provides a baseline signal from which to compare the activity of the two proteases. The activity of the MI probe was verified through incubation with the proteases and tested in vitro using the human HT29 tumor cell line and in vivo using female nude mice injected with HT29 cells. We found the MI probe had the appropriate specificity to the activity of their respective proteases, and the reporter dye did not activate when incubated in the presence of only MMP2 and CatB. Probe fluorescent activity was confirmed in vitro, and reporter signal activation was also noted. The fluorescent activity was also visible in vivo, with injected HT29 cells exhibiting fluorescence, distinguishing them from the rest of the animal. The reporter signal was also observable in vivo, which allowed the signal intensities of the protease probes to be corrected; this is a unique feature of this MI probe design.


2019 ◽  
Vol 11 (10) ◽  
pp. 845-859 ◽  
Author(s):  
Alisha N Jones ◽  
Michael Sattler

Abstract Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.


2015 ◽  
Vol 7 (12) ◽  
pp. 6530-6540 ◽  
Author(s):  
Lisong Xiao ◽  
Marianne Mertens ◽  
Laura Wortmann ◽  
Silke Kremer ◽  
Martin Valldor ◽  
...  

2009 ◽  
Vol 1 (2) ◽  
pp. 100-115 ◽  
Author(s):  
Nathalie Rieben ◽  
Nadia Cherouati ◽  
Karen L. Martinez
Keyword(s):  

2009 ◽  
Vol 1237 ◽  
Author(s):  
Zoraida Pascual Aguilar ◽  
Hengyi Xu ◽  
Ben Jones ◽  
John Dixon ◽  
Andrew Wang

AbstractNanotechnology is currently undergoing unprecedented development in various fields. There has been a widespread interest in the application of nanomaterials in medicine with its promise of improving imaging, diagnostics, and therapy. The recent advances in engineering and technology have led to the development of new nanoscale platforms such as quantum dots, gold nanocrystals, superparamagnetic nanocrystals, and other semiconductor nanoparticles. Literature on the applications of quantum dots in life sciences has recently increased in number. This may have led to predictions that nanotechnology in life sciences research will contribute $3.4 billion by 2010 while institutions have predicted that the market for nanotechnology and corresponding products will reach $1 trillion in 2012 (1).Ocean NanoTech is at the height of developmental stages of nanoparticle production for biological applications. Ocean’s high quantum-yield quantum dots (QDs) is currently being tested and used for cell imaging, as wells as for the detection of proteins, DNA, whole cells, and whole organisms. Imaging of cells involves conjugation of QDs to highly sensitive and specific antibody to form QD˜Ab conjugates that attach to specific protein target on the cell surface. Attachment of the QD˜Ab on the cell surface allows imaging of the cell under a fluorescence microscope. QD based imaging can be used in a multiplex immunoassay detection of several types of cells (or microorganisms) in a single sample when several size tunable quantum dots are used as reporter probes.We report the QD imaging of breast cancer cells. Using the breast cancer cell line SK-BR3, which expresses high levels of her2 antigens on the cell surface, anti-her2 were conjugated to Ocean’s quantum dots, QSH620. To eliminate non-specific binding of the QD˜20Ab Ocean’s super blocking buffer BBB and BBG were used. Preliminary results of in vitro studies indicated that QD based systems can be used to image cells. We anticipate that this system can be transferred to in vivo detection.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 171
Author(s):  
Catherine G. Y. Ngan ◽  
Anita Quigley ◽  
Richard J. Williams ◽  
Cathal D. O’Connell ◽  
Romane Blanchard ◽  
...  

For decades, the study of tissue-engineered skeletal muscle has been driven by a clinical need to treat neuromuscular diseases and volumetric muscle loss. The in vitro fabrication of muscle offers the opportunity to test drug-and cell-based therapies, to study disease processes, and to perhaps, one day, serve as a muscle graft for reconstructive surgery. This study developed a biofabrication technique to engineer muscle for research and clinical applications. A bioprinting protocol was established to deliver primary mouse myoblasts in a gelatin methacryloyl (GelMA) bioink, which was implanted in an in vivo chamber in a nude rat model. For the first time, this work demonstrated the phenomenon of myoblast migration through the bioprinted GelMA scaffold with cells spontaneously forming fibers on the surface of the material. This enabled advanced maturation and facilitated the connection between incoming vessels and nerve axons in vivo without the hindrance of a scaffold material. Immunohistochemistry revealed the hallmarks of tissue maturity with sarcomeric striations and peripherally placed nuclei in the organized bundles of muscle fibers. Such engineered muscle autografts could, with further structural development, eventually be used for surgical reconstructive purposes while the methodology presented here specifically has wide applications for in vitro and in vivo neuromuscular function and disease modelling.


Sign in / Sign up

Export Citation Format

Share Document