scholarly journals Tuning the structure and the mechanical properties of epoxy–silica sol–gel hybrid materials

RSC Advances ◽  
2016 ◽  
Vol 6 (13) ◽  
pp. 10736-10742 ◽  
Author(s):  
Berta Domènech ◽  
Ignasi Mata ◽  
Elies Molins

A new epoxy–silica porous material prepared via one-pot sol–gel process. Mechanical properties can be continuously tuned by modifying reactant proportions.

2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


1994 ◽  
Vol 6 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Yoshitake Iyoku ◽  
Masa-aki Kakimoto ◽  
Yoshio Imai

Poly(methylsilsesquixoane) network (silicone)-polyimide hybrid materials were successfully prepared by the sol-gel reaction of methyltriethoxysilane (MTES). The ethoxysilyl group in MTES was hydrolyzed and polycondensed in the solution of the polyamic acid, derived from pyromellitic dianhydride and bis(4-aminophenyl)ether, in N,N-dimethyl-acetamide (DMAc). The hybrid films were obtained by casting the reaction mixture, followed by heating up to 300°C. The hybrid materials containing 0-60wt% of silicone afforded flexible films. The films containing less than 7 wt% silicone were yellow and transparent, whereas the films with higher silicone content were yellow and opaque. Silicone particles with a diameter of around 1-10 μm were observed in the fracture surface of the hybrid films by scanning electron microscopy. Although the tensile strength and tensile modulus of the films obtained decreased with increasing silicone content. the value of the elongation at break remained at 60% up to 30% silicone content.


2018 ◽  
Vol 47 (9) ◽  
pp. 2925-2932 ◽  
Author(s):  
J. Brendlé

The sol–gel process involving hydrolysis and condensation reactions is an attractive way to form siloxane based hybrid materials since it is a one-step method performed under mild conditions.


2019 ◽  
Vol 38 (9) ◽  
pp. 586-597 ◽  
Author(s):  
Ananda S. Amarasekara ◽  
Deping Wang

Two chitosan silica hybrid materials were prepared by a two-step process in 78–84% yields using the homogeneous phase reaction of 3-(triethoxysilyl)propyl isocyanate with chitosan dissolved in 1-n-butyl-3-methylimidazolium chloride ionic liquid (∼10% w/w), which was followed by NH4OH catalyzed hydrolysis of triethoxysilyl groups and then sol-gel process. These new hybrid materials were shown to adsorb up to about 95% of Fe3+ from 5 × 10−4 M aqueous solution at room temperature in 24 h.


2016 ◽  
Vol 697 ◽  
pp. 293-296
Author(s):  
Xiao Yang Zhang ◽  
Xi Wei Qi ◽  
Zhi Yuan Yang ◽  
Li Bao ◽  
Min Zhang

Hydrothermal method and sol-gel process were used to synthesize multiferroic BiFeO3 ceramics. X-ray diffraction, scanning electron microscopy, vickers diamond indenter and three-point bending method were used to investigate the effects of methods on the phase structure, microstructures and mechanical properties. Cold isostatic pressing on the ceramics with two different loads (10 MPa, 200 MPa) was used to illustrate the influence of pressure in mechanical properties. The results show that all samples are crystallized in the perovskite phase. A few small traces of impurity are observed at a 2θ of ~28 o, which are found to be those of Bi2Fe4O9. The SEM images depict that samples prepared by sol-gel process are more uniform and the grain size is slightly larger than that of hydrothermal processed samples. The investigations on the hardness and flexural strength demonstrate the ceramics prepared by hydrothermal method have better mechanical properties than that of sol-gel process, and the mechanical properties can be obviously enhanced by increasing pressure.


2006 ◽  
Vol 18 (18) ◽  
pp. 4344-4353 ◽  
Author(s):  
Arántzazu González-Campo ◽  
Bruno Boury ◽  
Francesc Teixidor ◽  
Rosario Núñez

2005 ◽  
Vol 863 ◽  
Author(s):  
Bum-Gyu Choi ◽  
Byung Ro Kim ◽  
Myung-Sun Moon ◽  
Jung-Won Kang ◽  
Min-Jin Ko

AbstractReducing interline capacitance and line resistance is required to minimize RC delays, reduce power consumption and crosstalk below 100nm node technology. For this purpose, various inorganic- and organic polymers have been tested to reduce dielectric constants in parallel with the use of copper as metal line. Lowering the dielectric constants, in particular, causes the detrimental effect on mechanical properties, and then leads to film damage and/or delamination during chemical-mechanical planarization CMP) or repeated thermal cure cycles. To overcome this issue, new carbon-bridged hybrid materials synthesized by organometallic silane precursors and sol-gel reaction are proposed.In this work, we have developed new organic-inorganic hybrid low-k dielectrics with linear or cyclic carbon bridged structures. The differently bridged carbon structures were formed by a controlled reaction. 1H NMR, 29Si NMR analysis and GC/MSD analysis were conducted for the structural characterization of new hybrid low-k dielectric. The mechanical and dielectric properties of these hybrid materials were characterized by using nanoindentation with continuous stiffness measurement and Al dot MIS techniques. The results indicated that these organic-inorganic hybrid materials were very promising polymers for low-k dielectrics that had low dielectric constants with high thermal and mechanical properties. It has been also demonstrated that electrical and mechanical properties of the hybrid films could be tailored by copolymerization with PMSSQ and through the introduction of porogen.


Sign in / Sign up

Export Citation Format

Share Document