Nanoparticle assembly: from fundamentals to applications: concluding remarks

2016 ◽  
Vol 186 ◽  
pp. 529-537 ◽  
Author(s):  
Oleg Gang

Nanoparticles, due to their broadly tunable functions, are major building blocks for generating new materials. However, building such materials for practical applications by self-assembly is quite challenging. Following the Faraday Discussion on “Nanoparticle Assembly: from Fundamentals to Applications” we discuss here the current trends in the field of self-assembly, including: understanding the unique interplay of molecular and nanoscale effects, a development of novel approaches for the creation of targeted nanoparticle architectures, advances in controlling dynamic behavior of systems and enabling new functions through specifically formed structures.

2018 ◽  
Vol 56 (5) ◽  
Author(s):  
Trung Dac Nguyen ◽  
Hanh Thi Hong Nguyen ◽  
Minh Duy Le ◽  
Hung Xuan Truong

Next-generation nanotechnology demands new materials and devices that are highly efficient, multifunctional, cost-effective and environmental friendly. The need to accelerate the discovery of new materials therefore becomes more pressing than ever. Over the past two decades, self-assembly techniques have provided a promising means for fabricating nanomaterials, where the underlying structures are formed by the self-organization of building blocks, such as nanoparticles, colloids and block copolymers, in a similar fashion to biological systems. The fundamental challenges to these bottom techniques are to design suitable assembling units, to tailor their interaction rules and to identify possible assembly pathways. In this report, we will demonstrate how computer simulation has been a powerful tool for tackling these fundamental challenges, providing not only profound insights into the complex interplay between the building blocks’ geometry and their interactions, but also valuable predictions to inspire on-going and future experiment. Theoretical background of self-assembly studies; simulation methods and data analysis tools commonly used will also be discussed.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2651
Author(s):  
Yafei Li ◽  
Jiangtao Lv ◽  
Qiongchan Gu ◽  
Sheng Hu ◽  
Zhigang Li ◽  
...  

Metamaterials are “new materials” with different superior physical properties, which have generated great interest and become popular in scientific research. Various designs and functional devices using metamaterials have formed a new academic world. The application concept of metamaterial is based on designing diverse physical structures that can break through the limitations of traditional optical materials and composites to achieve extraordinary material functions. Therefore, metadevices have been widely studied by the academic community recently. Using the properties of metamaterials, many functional metadevices have been well investigated and further optimized. In this article, different metamaterial structures with varying functions are reviewed, and their working mechanisms and applications are summarized, which are near-field energy transfer devices, metamaterial mirrors, metamaterial biosensors, and quantum-cascade detectors. The development of metamaterials indicates that new materials will become an important breakthrough point and building blocks for new research domains, and therefore they will trigger more practical and wide applications in the future.


2015 ◽  
Vol 6 (7) ◽  
pp. 3663-3673 ◽  
Author(s):  
David J. Lunn ◽  
John R. Finnegan ◽  
Ian Manners

The solution-phase self-assembly or “polymerization” of discrete colloidal building blocks, such as “patchy” nanoparticles and multicompartment micelles, is attracting growing attention with respect to the creation of complex hierarchical materials.


2021 ◽  
Author(s):  
Jin Ho Bae ◽  
Hong-Sik Kim ◽  
Gijeong Kim ◽  
Ji-Joon Song ◽  
Hak-Sung Kim

The assembly of proteins in a programmable manner provides insight into the underlying mechanisms of protein self-assembly in nature as well as the creation of novel functional nanomaterials for practical applications. Despite many advances, however, a rational protein assembly with an easy scalability in terms of size and valency remains a challenging task. Here, we present a simple bottom-up approach to the supramolecular protein assembly with a tunable size and valency in a programmable manner. The dendrimer-like protein assembly, called a prodrimer, was constructed using a total of three monomeric proteins: a core and two building-block proteins. The prodrimer generations were grown by a stepwise and alternate addition of a building block using two pairs of orthogonal protein-peptide interactions, leading to a higher-generation prodrimer with a mega-dalton size and multi-valency. The valency of the prodrimers at the periphery was tunable with the generation, enabling a single-step functionalization. A second-generation prodrimer functionalized with a target-specific protein binder showed a three-order of magnitude increase in binding affinity compared to a monomeric counterpart due to the avidity. The prodrimers functionalized with a targeting moiety and a cytotoxic protein cargo exhibited a highly enhanced cellular cytotoxicity, exemplifying their utility as a protein delivery platform. The present approach can be effectively used in the creation of protein architectures with new functions for biotechnological and medical applications.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6824
Author(s):  
Kwan Lee ◽  
Jonghyun Moon ◽  
Jeonghwa Jeong ◽  
Suck Won Hong

Inorganic metal halide perovskite nanocrystals, such as quantum dots (QDs), have emerged as intriguing building blocks for miniaturized light-emitting and optoelectronic devices. Although conventional lithographic approaches and printing techniques allow for discrete patterning at the micro/nanoscale, it is still important to utilize intrinsic QDs with the concomitant retaining of physical and chemical stability during the fabrication process. Here, we report a simple strategy for the evaporative self-assembly to produce highly ordered structures of CsPbBr3 and CsPbI3 QDs on a substrate in a precisely controllable manner by using a capillary-bridged restrict geometry. Quantum confined CsPbBr3 and CsPbI3 nanocrystals, synthesized via a modified hot-injection method with excess halide ions condition, were readily adapted to prepare colloidal QD solutions. Subsequently, the spatially patterned arrays of the perovskite QD rings were crafted in a confirmed geometry with high fidelity by spontaneous solvent evaporation. These self-organized concentric rings were systemically characterized regarding the center-to-center distance, width, and height of the patterns. Our results not only facilitate a fundamental understanding of assembly in the perovskite QDs to enable the solution-printing process but also provide a simple route for offering promising practical applications in optoelectronics.


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2018 ◽  
Author(s):  
Erik Leonhardt ◽  
Jeff M. Van Raden ◽  
David Miller ◽  
Lev N. Zakharov ◽  
Benjamin Aleman ◽  
...  

Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, atomically-precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid-state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical “forests” of these arrays on a highly-ordered pyrolytic graphite (HOPG) surface through epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, is readily transferred to the bulk phase, implying that the properties of these materials can be directly altered via precise functionalization of their nanohoop building blocks. The strategy presented is expected to have broader applications in the development of new graphitic nanomaterials with π-rich cavities reminiscent of CNTs.


2017 ◽  
Author(s):  
Niamh Mac Fhionnlaoich ◽  
Stephen Schrettl ◽  
Nicholas B. Tito ◽  
Ye Yang ◽  
Malavika Nair ◽  
...  

The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase leads to the assembly of individual nanometre-sized particles into arrays of micrometre-sized aggregates, whose size and characteristic spacing can be tuned by varying the cooling rate. This fully reversible process offers hierarchical control over structural order on the molecular, nanoscopic, and microscopic level and is an interesting model system for the programmable patterning of nanocomposites with access to micrometre-sized periodicities.


Impact ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 52-53
Author(s):  
Lucy Sharp

Materials technology is a constantly evolving discipline, with new materials leading to novel applications. For example, new material properties arise from combining different materials into composites. Researching materials can help solve societal challenges, with the creation of innovative materials resulting in breakthroughs in overcoming hurdles facing humankind, including energy challenges and medical problems. Innovative materials breathe new life into industries and spur on scientific and technological discovery.


2017 ◽  
Vol 70 (2) ◽  
pp. 126 ◽  
Author(s):  
Mark P. Del Borgo ◽  
Ketav Kulkarni ◽  
Marie-Isabel Aguilar

The unique structures formed by β-amino acid oligomers, or β-peptide foldamers, have been studied for almost two decades, which has led to the discovery of several distinctive structures and bioactive molecules. Recently, this area of research has expanded from conventional peptide drug design to the formation of assemblies and nanomaterials by peptide self-assembly. The unique structures formed by β-peptides give rise to a set of new materials with altered properties that differ from conventional peptide-based materials; such new materials may be useful in several bio- and nanomaterial applications.


Sign in / Sign up

Export Citation Format

Share Document