Trapping, manipulation, and crystallization of live cells using magnetofluidic tweezers

2017 ◽  
Vol 2 (1) ◽  
pp. 50-54 ◽  
Author(s):  
J. V. I. Timonen ◽  
C. Raimondo ◽  
D. Pilans ◽  
P. P. Pillai ◽  
B. A. Grzybowski

Live mammalian cells are captured and manipulated in magnetofluidic traps created in a suspension of biocompatible, magnetic nanoparticles by a coaxial magnetic/non-magnetic “micropen”.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongtao Geng ◽  
Alexandros Pertsinidis

AbstractVisualizing the 4D genome in live cells is essential for understanding its regulation. Programmable DNA-binding probes, such as fluorescent clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector (TALE) proteins have recently emerged as powerful tools for imaging specific genomic loci in live cells. However, many such systems rely on genetically-encoded components, often requiring multiple constructs that each must be separately optimized, thus limiting their use. Here we develop efficient and versatile systems, based on in vitro transcribed single-guide-RNAs (sgRNAs) and fluorescently-tagged recombinant, catalytically-inactivated Cas9 (dCas9) proteins. Controlled cell delivery of pre-assembled dCas9-sgRNA ribonucleoprotein (RNP) complexes enables robust genomic imaging in live cells and in early mouse embryos. We further demonstrate multiplex tagging of up to 3 genes, tracking detailed movements of chromatin segments and imaging spatial relationships between a distal enhancer and a target gene, with nanometer resolution in live cells. This simple and effective approach should facilitate visualizing chromatin dynamics and nuclear architecture in various living systems.


2018 ◽  
Vol 19 (10) ◽  
pp. 3159 ◽  
Author(s):  
Fransiscus Kerans ◽  
Lisa Lungaro ◽  
Asim Azfer ◽  
Donald Salter

The magnetization of mesenchymal stem cells (MSC) has the potential to aid tissue engineering approaches by allowing tracking, targeting, and local retention of cells at the site of tissue damage. Commonly used methods for magnetizing cells include optimizing uptake and retention of superparamagnetic iron oxide nanoparticles (SPIONs). These appear to have minimal detrimental effects on the use of MSC function as assessed by in vitro assays. The cellular content of magnetic nanoparticles (MNPs) will, however, decrease with cell proliferation and the longer-term effects on MSC function are not entirely clear. An alternative approach to magnetizing MSCs involves genetic modification by transfection with one or more genes derived from Magnetospirillum magneticum AMB-1, a magnetotactic bacterium that synthesizes single-magnetic domain crystals which are incorporated into magnetosomes. MSCs with either or mms6 and mmsF genes are followed by bio-assimilated synthesis of intracytoplasmic magnetic nanoparticles which can be imaged by magnetic resonance (MR) and which have no deleterious effects on MSC proliferation, migration, or differentiation. The stable transfection of magnetosome-associated genes in MSCs promotes assimilation of magnetic nanoparticle synthesis into mammalian cells with the potential to allow MR-based cell tracking and, through external or internal magnetic targeting approaches, enhanced site-specific retention of cells for tissue engineering.


2021 ◽  
Author(s):  
◽  
Sarah Cordiner

<p>Yessotoxin (YTX) is a disulfated polycyclic polyether, produced by dinoflagellate algae. It is known to accumulate in edible shellfish, raising concerns about its potential risk to human health. YTX was initially classified as a diarrhetic shellfish poisoning toxin, due to commonly being extracted alongside toxins of this variety. However, YTX does not induce any of the effects characteristic of this group. A separate category for YTXs was established by the European Commission in 2002 and a limit of 1 mg/kg of shellfish meat was established. YTX has been shown to be an apoptosis inducer in a variety of cell lines in vitro. It has also been shown to be lethal to mice when administered by intra-peritoneal injection. However, when administered orally only limited toxicity is observed. The di-desulfated derivative (dsYTX) has also been shown to be lethal to mice following intra-peritoneal injection. However it causes damage mainly to the liver, whereas YTX appears to target the heart. The mechanism of action of YTX is still unknown. The goals of this project were to use proteomic techniques, to examine the effects of YTX and dsYTX on Saccharomyces cerevisiae and human promyelocytic leukemic blood leukocyte (HL60) cells. Young et al. (2009) showed that the major proteins affected by YTX in HepG2 cells were heterogeneous ribonucleoproteins (hnRNPs), lamins, cathepsins and heat shock proteins. HnRNPs had not previously been identified as possible targets of YTX. Alterations of hnRNP levels were also seen in HL60 cells treated with microtubule stabilising agents, peloruside A or paclitaxel (Wilmes et al., 2011, 2012). No differences in cell morphology or significant changes in protein abundance were observed when S. cerevisiae cells were exposed to YTX. A small number of significant changes in abundance were detected when these cells were exposed to dsYTX. The small number of protein changes seen is possibly due to poor toxin entrance into the cell through the yeast cell wall, lack of protein targets structurally homologous to those found in mammalian cells, or fast removal of the toxin through export pumps. Twenty-four hour incubation of HL60 cells with YTX resulted in increased cell death but no change in cell morphology. Treatment with dsYTX caused cells to aggregate into clusters and a 24% decrease in the number of live cells. Increases were found in the abundance of β-actin, hnRNP A and BiP proteins in response to dsYTX treatment. Decreases in these proteins were seen in HepG2 cells treated with YTX for 24 hours. As seen in S. cerevisiae cells, dsYTX had a greater effect in HL60 cells compared with YTX. Overall, the results provide some support for the previously identified effect on hnRNPs in mammalian cells exposed to YTX.</p>


2021 ◽  
Author(s):  
◽  
Sarah Cordiner

<p>Yessotoxin (YTX) is a disulfated polycyclic polyether, produced by dinoflagellate algae. It is known to accumulate in edible shellfish, raising concerns about its potential risk to human health. YTX was initially classified as a diarrhetic shellfish poisoning toxin, due to commonly being extracted alongside toxins of this variety. However, YTX does not induce any of the effects characteristic of this group. A separate category for YTXs was established by the European Commission in 2002 and a limit of 1 mg/kg of shellfish meat was established. YTX has been shown to be an apoptosis inducer in a variety of cell lines in vitro. It has also been shown to be lethal to mice when administered by intra-peritoneal injection. However, when administered orally only limited toxicity is observed. The di-desulfated derivative (dsYTX) has also been shown to be lethal to mice following intra-peritoneal injection. However it causes damage mainly to the liver, whereas YTX appears to target the heart. The mechanism of action of YTX is still unknown. The goals of this project were to use proteomic techniques, to examine the effects of YTX and dsYTX on Saccharomyces cerevisiae and human promyelocytic leukemic blood leukocyte (HL60) cells. Young et al. (2009) showed that the major proteins affected by YTX in HepG2 cells were heterogeneous ribonucleoproteins (hnRNPs), lamins, cathepsins and heat shock proteins. HnRNPs had not previously been identified as possible targets of YTX. Alterations of hnRNP levels were also seen in HL60 cells treated with microtubule stabilising agents, peloruside A or paclitaxel (Wilmes et al., 2011, 2012). No differences in cell morphology or significant changes in protein abundance were observed when S. cerevisiae cells were exposed to YTX. A small number of significant changes in abundance were detected when these cells were exposed to dsYTX. The small number of protein changes seen is possibly due to poor toxin entrance into the cell through the yeast cell wall, lack of protein targets structurally homologous to those found in mammalian cells, or fast removal of the toxin through export pumps. Twenty-four hour incubation of HL60 cells with YTX resulted in increased cell death but no change in cell morphology. Treatment with dsYTX caused cells to aggregate into clusters and a 24% decrease in the number of live cells. Increases were found in the abundance of β-actin, hnRNP A and BiP proteins in response to dsYTX treatment. Decreases in these proteins were seen in HepG2 cells treated with YTX for 24 hours. As seen in S. cerevisiae cells, dsYTX had a greater effect in HL60 cells compared with YTX. Overall, the results provide some support for the previously identified effect on hnRNPs in mammalian cells exposed to YTX.</p>


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 430
Author(s):  
Amreen ◽  
Hayssam M. Ali ◽  
Mohammad Ahmad ◽  
Mohamed Z. M. Salem ◽  
Altaf Ahmad

Hydrogen peroxide (H2O2) serves fundamental regulatory functions in metabolism beyond the role as damage signal. During stress conditions, the level of H2O2 increases in the cells and causes oxidative stress, which interferes with normal cell growth in plants and animals. The H2O2 also acts as a central signaling molecule and regulates numerous pathways in living cells. To better understand the generation of H2O2 in environmental responses and its role in cellular signaling, there is a need to study the flux of H2O2 at high spatio–temporal resolution in a real-time fashion. Herein, we developed a genetically encoded Fluorescence Resonance Energy Transfer (FRET)-based nanosensor (FLIP-H2O2) by sandwiching the regulatory domain (RD) of OxyR between two fluorescent moieties, namely ECFP and mVenus. This nanosensor was pH stable, highly selective to H2O2, and showed insensitivity to other oxidants like superoxide anions, nitric oxide, and peroxynitrite. The FLIP-H2O2 demonstrated a broad dynamic range and having a binding affinity (Kd) of 247 µM. Expression of sensor protein in living bacterial, yeast, and mammalian cells showed the localization of the sensor in the cytosol. The flux of H2O2 was measured in these live cells using the FLIP-H2O2 under stress conditions or by externally providing the ligand. Time-dependent FRET-ratio changes were recorded, which correspond to the presence of H2O2. Using this sensor, real-time information of the H2O2 level can be obtained non-invasively. Thus, this nanosensor would help to understand the adverse effect of H2O2 on cell physiology and its role in redox signaling.


2014 ◽  
Vol 25 (22) ◽  
pp. 3610-3618 ◽  
Author(s):  
Robert Mahen ◽  
Birgit Koch ◽  
Malte Wachsmuth ◽  
Antonio Z. Politi ◽  
Alexis Perez-Gonzalez ◽  
...  

Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells.


2017 ◽  
Author(s):  
Noa Aloush ◽  
Tomer Schvartz ◽  
Andres I. König ◽  
Sarit Cohen ◽  
Eugene Brozgol ◽  
...  

ABSTRACTGenetic code expansion enables the incorporation of non-canonical amino acids (ncAAs) into expressed proteins. ncAAs are usually encoded by a stop codon that is decoded by an exogenous orthogonal aminoacyl tRNA synthetase and its cognate suppressor tRNA, such as the pyrrolysine synthetase/ pair. In such systems, stop codon suppression is dependent on the intracellular levels of the exogenous tRNA. Therefore, multiple copies of the tRNAPyl gene (PylT) are encoded to improve ncAA incorporation. However, certain applications in mammalian cells, such as live-cell imaging applications, where labelled tRNA contributes to background fluorescence, can benefit from the use of less invasive minimal expression systems. Accordingly, we studied the effect of tRNAPyl on live-cell fluorescence imaging of bioorthogonally-labelled intracellular proteins. We found that in COS7 cells, a decrease in PylT copy numbers had no measurable effect on protein expression levels. Importantly, reducing PylT copy numbers improved the quality of live-cells images by enhancing the signal-to-noise ratio and reducing an immobile tRNAPyl population. This enabled us to improve live cell imaging of bioorthogonally labelled intracellular proteins, and to simultaneously label two different proteins in a cell. Our results indicate that the number of introduced PylT genes can be minimized according to the transfected cell line, incorporated ncAA, and application.


2017 ◽  
Author(s):  
K. C. Courtney ◽  
W Pezeshkian ◽  
R Raghupathy ◽  
C Zhang ◽  
A Darbyson ◽  
...  

AbstractMammalian cell sphingolipids, primarily with C24 and C16 acyl chains, reside in the outer leaflet of the plasma membrane. Curiously, little is known how C24 sphingolipids impact cholesterol and membrane microdomains. Here, we generated giant unilamellar vesicles and live mammalian cells with C24 or C16 sphingomyelin exclusively in the outer leaflet and compared microdomain formation. In giant unilamellar vesicles, we observed that asymmetrically placed C24 sphingomyelin suppresses microdomains. Conversely, C16 sphingomyelin facilitates microdomains. Replacing endogenous sphingolipids with C24 or C16 sphingomyelin in live HeLa cells has a similar impact on microdomains, characterized by FRET between GPI-anchored proteins: C24, but not C16, sphingomyelin suppresses submicron domains in the plasma membrane. Molecular dynamics simulations indicated that, when in the outer leaflet, the acyl chain of C24 sphingomyelin interdigitates into the opposing leaflet, thereby favouring cholesterol in the inner leaflet. We indeed found that cholesterol prefers the inner over the outer leaflet of asymmetric unilamellar vesicles (80/20) when C24 sphingomyelin is in the outer leaflet. However, when C16 sphingomyelin is in the outer leaflet, cholesterol is evenly partitioned between leaflets (50/50). Interestingly, when a mixture of C24/C16 sphingomyelin is in the outer leaflet of unilamellar vesicles, cholesterol still prefers the inner leaflet (80/20). Indeed, in human erythrocyte plasma membrane, where a mixture of C24 and C16 sphingolipids are naturally in the outer leaflet, cholesterol prefers the cytoplasmic leaflet (80/20). Therefore, C24 sphingomyelin uniquely interacts with cholesterol and governs the lateral organization in asymmetric membranes, including the plasma membrane, potentially by generating cholesterol asymmetry.Statement of SignificanceThe plasma membrane bilayer of mammalian cells has distinct phospholipids between the outer and inner leaflet, with sphingolipids exclusively in the outer leaflet. A large portion of mammalian sphingolipids have very long acyl chains (C24). Little is known how C24 sphingolipids function in the outer leaflet. Mutations in the ceramide synthase 2 gene is found to decrease C24. This severely perturbs homeostasis in mice and humans. Here, we investigated unilamellar vesicles and mammalian cells with C24 sphingomyelin exclusively in the outer leaflet. We provide evidence that outer leaflet C24 sphingomyelin suppresses microdomains in model membranes and live cells by partitioning cholesterol into the inner leaflet. We propose that C24 sphingolipids are critical to the function of the plasma membrane.


2019 ◽  
Author(s):  
Anna Maria Ranieri ◽  
Kathryn Leslie ◽  
Song Huang ◽  
Stefano Stagni ◽  
Denis Jacquemin ◽  
...  

There is a lack of molecular probes for imaging bacteria, in comparison to the array of such tools available for the imaging of mammalian cells. This is especially so for correlative probes, which are proving to be powerful tools for enhancing the imaging of live cells. In this work a platinum(II)-naphthalimide molecule has been developed to extend small molecule correlative probes to bacterial imaging. The probe was designed to exploit the naphthalimide moiety as a luminescent probe for super-resolution microscopy, with the platinum(II) centre enabling visualisation of the complex with ion nanoscopy. Photophysical characterisation and theoretical studies confirmed that the emission properties of the naphthalimide are not altered by the platinum(II) centre. Structured illumination microscopy (SIM) imaging on live <i>Bacillus cereus</i>revealed that the platinum(II) centre does not change the sub-cellular localisation of the naphthalimide, and confirmed the suitability of the probe for super-resolution microscopy. NanoSIMS analysis of the sample was used to monitor the uptake of the platinum(II) complex within the bacteria and proved the correlative action of the probe. The successful combination of these two probe moieties with no perturbation of their individual detection introduces a platform for a versatile range of new correlative probes for bacteria.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
J. G. Munguía-Lopez ◽  
E. Muñoz-Sandoval ◽  
J. Ortiz-Medina ◽  
F. J. Rodriguez-Macias ◽  
A. De Leon-Rodriguez

The effect of nitrogen-doped multiwall carbon nanotubes (CNx) on the proliferation of NIH-3T3 murine fibroblasts is presented. CNTs were dispersed in distillated water and incubated with mammalian cells in order to evaluate their toxicity. Also, the influence of factors such as dosage (7 and 70 µg/mL), exposure time (24 to 96 h), and the exposure route (before and after cell liftoff) on the cell proliferation was evaluated. When the CNxwere simultaneously incubated with the cells, the control culture reached a maximum cell concentration of 1.3 × 105  ±  3.4 × 104cells per well at 96 h, whereas cultures with 7 µg/mL reached a concentration of 2.6 × 104  ±  5.3 × 103cells. In the case of 70 µg/mL of CNxmost of the cells were dead. The CNxthat were added 24 h after cell dissociation showed that live cells decreased, with a cell concentration of 9.6 × 104  ±  9 × 103for 7 µg/mL and 5.5 × 104  ±  9.5 × 103for 70 µg/mL, in contrast to control cultures with 1.1 × 106  ±  1.5 × 104. The results showed that the CNxhad cytotoxic effects depending on the concentration and exposure route.


Sign in / Sign up

Export Citation Format

Share Document