scholarly journals A Proteomic Analysis of the Effects of Yessotoxin and Di-Desulfoyessotoxin on Yeast and Mammalian Cells

2021 ◽  
Author(s):  
◽  
Sarah Cordiner

<p>Yessotoxin (YTX) is a disulfated polycyclic polyether, produced by dinoflagellate algae. It is known to accumulate in edible shellfish, raising concerns about its potential risk to human health. YTX was initially classified as a diarrhetic shellfish poisoning toxin, due to commonly being extracted alongside toxins of this variety. However, YTX does not induce any of the effects characteristic of this group. A separate category for YTXs was established by the European Commission in 2002 and a limit of 1 mg/kg of shellfish meat was established. YTX has been shown to be an apoptosis inducer in a variety of cell lines in vitro. It has also been shown to be lethal to mice when administered by intra-peritoneal injection. However, when administered orally only limited toxicity is observed. The di-desulfated derivative (dsYTX) has also been shown to be lethal to mice following intra-peritoneal injection. However it causes damage mainly to the liver, whereas YTX appears to target the heart. The mechanism of action of YTX is still unknown. The goals of this project were to use proteomic techniques, to examine the effects of YTX and dsYTX on Saccharomyces cerevisiae and human promyelocytic leukemic blood leukocyte (HL60) cells. Young et al. (2009) showed that the major proteins affected by YTX in HepG2 cells were heterogeneous ribonucleoproteins (hnRNPs), lamins, cathepsins and heat shock proteins. HnRNPs had not previously been identified as possible targets of YTX. Alterations of hnRNP levels were also seen in HL60 cells treated with microtubule stabilising agents, peloruside A or paclitaxel (Wilmes et al., 2011, 2012). No differences in cell morphology or significant changes in protein abundance were observed when S. cerevisiae cells were exposed to YTX. A small number of significant changes in abundance were detected when these cells were exposed to dsYTX. The small number of protein changes seen is possibly due to poor toxin entrance into the cell through the yeast cell wall, lack of protein targets structurally homologous to those found in mammalian cells, or fast removal of the toxin through export pumps. Twenty-four hour incubation of HL60 cells with YTX resulted in increased cell death but no change in cell morphology. Treatment with dsYTX caused cells to aggregate into clusters and a 24% decrease in the number of live cells. Increases were found in the abundance of β-actin, hnRNP A and BiP proteins in response to dsYTX treatment. Decreases in these proteins were seen in HepG2 cells treated with YTX for 24 hours. As seen in S. cerevisiae cells, dsYTX had a greater effect in HL60 cells compared with YTX. Overall, the results provide some support for the previously identified effect on hnRNPs in mammalian cells exposed to YTX.</p>

2021 ◽  
Author(s):  
◽  
Sarah Cordiner

<p>Yessotoxin (YTX) is a disulfated polycyclic polyether, produced by dinoflagellate algae. It is known to accumulate in edible shellfish, raising concerns about its potential risk to human health. YTX was initially classified as a diarrhetic shellfish poisoning toxin, due to commonly being extracted alongside toxins of this variety. However, YTX does not induce any of the effects characteristic of this group. A separate category for YTXs was established by the European Commission in 2002 and a limit of 1 mg/kg of shellfish meat was established. YTX has been shown to be an apoptosis inducer in a variety of cell lines in vitro. It has also been shown to be lethal to mice when administered by intra-peritoneal injection. However, when administered orally only limited toxicity is observed. The di-desulfated derivative (dsYTX) has also been shown to be lethal to mice following intra-peritoneal injection. However it causes damage mainly to the liver, whereas YTX appears to target the heart. The mechanism of action of YTX is still unknown. The goals of this project were to use proteomic techniques, to examine the effects of YTX and dsYTX on Saccharomyces cerevisiae and human promyelocytic leukemic blood leukocyte (HL60) cells. Young et al. (2009) showed that the major proteins affected by YTX in HepG2 cells were heterogeneous ribonucleoproteins (hnRNPs), lamins, cathepsins and heat shock proteins. HnRNPs had not previously been identified as possible targets of YTX. Alterations of hnRNP levels were also seen in HL60 cells treated with microtubule stabilising agents, peloruside A or paclitaxel (Wilmes et al., 2011, 2012). No differences in cell morphology or significant changes in protein abundance were observed when S. cerevisiae cells were exposed to YTX. A small number of significant changes in abundance were detected when these cells were exposed to dsYTX. The small number of protein changes seen is possibly due to poor toxin entrance into the cell through the yeast cell wall, lack of protein targets structurally homologous to those found in mammalian cells, or fast removal of the toxin through export pumps. Twenty-four hour incubation of HL60 cells with YTX resulted in increased cell death but no change in cell morphology. Treatment with dsYTX caused cells to aggregate into clusters and a 24% decrease in the number of live cells. Increases were found in the abundance of β-actin, hnRNP A and BiP proteins in response to dsYTX treatment. Decreases in these proteins were seen in HepG2 cells treated with YTX for 24 hours. As seen in S. cerevisiae cells, dsYTX had a greater effect in HL60 cells compared with YTX. Overall, the results provide some support for the previously identified effect on hnRNPs in mammalian cells exposed to YTX.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongtao Geng ◽  
Alexandros Pertsinidis

AbstractVisualizing the 4D genome in live cells is essential for understanding its regulation. Programmable DNA-binding probes, such as fluorescent clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector (TALE) proteins have recently emerged as powerful tools for imaging specific genomic loci in live cells. However, many such systems rely on genetically-encoded components, often requiring multiple constructs that each must be separately optimized, thus limiting their use. Here we develop efficient and versatile systems, based on in vitro transcribed single-guide-RNAs (sgRNAs) and fluorescently-tagged recombinant, catalytically-inactivated Cas9 (dCas9) proteins. Controlled cell delivery of pre-assembled dCas9-sgRNA ribonucleoprotein (RNP) complexes enables robust genomic imaging in live cells and in early mouse embryos. We further demonstrate multiplex tagging of up to 3 genes, tracking detailed movements of chromatin segments and imaging spatial relationships between a distal enhancer and a target gene, with nanometer resolution in live cells. This simple and effective approach should facilitate visualizing chromatin dynamics and nuclear architecture in various living systems.


2016 ◽  
Vol 44 (05) ◽  
pp. 997-1008 ◽  
Author(s):  
Feifei Ma ◽  
Lijuan Hu ◽  
Ming Yu ◽  
Feng Wang

Hypoxia-inducible factor-1 (HIF-1) is an [Formula: see text] dimeric transcription factor. Because HIF-1[Formula: see text] is instable with oxygen, HIF-1 is scarce in normal mammalian cells. However, HIF-1[Formula: see text] is expressed in pathological conditions such as cancer and obesity. Inhibiting HIF-1[Formula: see text] may be of therapeutic value for these pathologies. Here, we investigated whether emodin, derived from the herb of Rheum palmatum L, which is also known as Chinese rhubarb, and is native to China, regulates HIF-1[Formula: see text] expression. Male C57BL/6 mice without or with diet-induced obesity were treated with emodin for two weeks, while control mice were treated with vehicle. HIF-1[Formula: see text] expression was determined by Western blot. We found that emodin inhibited obesity-induced HIF-1[Formula: see text] expression in liver and skeletal muscle but did not regulate HIF-1[Formula: see text] expression in the kidneys or in intra-abdominal fat. In vitro, emodin inhibited HIF-1[Formula: see text] expression in human HepG2 hepatic cells and Y1 adrenocortical cells. Further, we investigated the mechanisms of HIF-1[Formula: see text] expression in emodin-treated HepG2 cells. First, we found that HIF-1[Formula: see text] had normal stability in the presence of emodin. Thus, emodin did not decrease HIF-1[Formula: see text] by stimulating its degradation. Importantly, emodin decreased the activity of the signaling pathways that led to HIF-1[Formula: see text] biosynthesis. Interestingly, emodin increased HIF-1[Formula: see text] mRNA in HepG2 cells. This may be a result of feedback in response to the emodin-induced decrease in the protein of HIF-1[Formula: see text]. In conclusion, emodin decreases hepatic HIF-1[Formula: see text] by inhibiting its biosynthesis.


1994 ◽  
Vol 300 (1) ◽  
pp. 201-209 ◽  
Author(s):  
G Elia ◽  
M G Santoro

Synthesis of heat-shock proteins (HSPs) is universally induced in eukaryotic and prokaryotic cells by exposure to elevated temperatures or to other types of environmental stress. In mammalian cells, HSPs belonging to the 70 kDa family (HSP70) have a regulatory role in several cellular processes, and have been shown to be involved in the control of cell proliferation and differentiation. Although many types of HSP70 inducers have been identified, only a few compounds, all belonging to the flavonoid group, have been shown to inhibit HSP70 induction. Because inhibitors of HSP70 synthesis could be an important tool with which to study the function of this protein, we have investigated the effect of quercetin, a flavonoid with antiproliferative activity which is widely distributed in nature, on HSP70 synthesis in human K562 erythroleukaemia cells after treatment with severe or mild heat shock and with other inducers. Quercetin was found to affect HSP70 synthesis at more than one level, depending on the conditions used. Indeed, after severe heat shock (45 degrees C for 20 min) treatment with quercetin, at non-toxic concentrations, was found to inhibit HSP70 synthesis for a period of 3-4 h. This block appeared to be exerted at the post-transcriptional level and to be cell-mediated, as the addition of quercetin during translation of HSP70 mRNA in vitro had no effect. After prolonged (90 min) exposure at 43 degrees C, however, quercetin was found to inhibit also HSP70 mRNA transcription. Pretreatment of K562 cells with quercetin had no effect on HSP70 expression, and quercetin needed to be present during induction to be effective. Under all conditions tested, the quercetin-induced block of HSP70 synthesis was found to be transient and, after an initial delay, synthesis of HSP70 reached the control rate and continued at the same level for several hours after the time at which HSP70 synthesis had been turned off in control cells. Finally, inhibition of HSP70 synthesis by quercetin appeared to be dependent on the temperature used and on the type of stressor.


1990 ◽  
Vol 258 (4) ◽  
pp. C723-C729 ◽  
Author(s):  
M. Locke ◽  
E. G. Noble ◽  
B. G. Atkinson

Spleen cells, peripheral lymphocytes, and soleus muscles were removed from male Sprague-Dawley rats that had been run on a treadmill (24 m/min) for either 20, 40, or 60 min or to exhaustion (86 +/- 41 min) and were labeled in vitro with [35S]methionine at 37 degrees C. Similar tissues from nonrunning control rats were labeled in vitro at either 37 or 43 degrees C (heat shock). Fluorographic analyses of one- and two-dimensional polyacrylamide gel electrophoretic separations of the proteins from cells and tissues of exercised rats demonstrate the new or enhanced synthesis of proteins of approximately 65, 72, 90, and 100 kDa. Although synthesis of these proteins is low or not detectable in tissues from control rats labeled at 37 degrees C, they are prominent products of similar tissues labeled under heat-shock conditions (43 degrees C) and, in fact, correspond in Mr and pI with the so-called heat-shock proteins. These results suggest that exercise is a sufficient stimulus to induce or enhance the synthesis of heat shock and/or stress proteins in mammalian cells and tissues.


1997 ◽  
Vol 137 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Luca Falciola ◽  
Fabio Spada ◽  
Sabina Calogero ◽  
Gernot Längst ◽  
Renate Voit ◽  
...  

High mobility group 1 (HMG1) protein is an abundant and conserved component of vertebrate nuclei and has been proposed to play a structural role in chromatin organization, possibly similar to that of histone H1. However, a high abundance of HMG1 had also been reported in the cytoplasm and on the surface of mammalian cells. We conclusively show that HMG1 is a nuclear protein, since several different anti-HMG1 antibodies stain the nucleoplasm of cultured cells, and epitope-tagged HMG1 is localized in the nucleus only. The protein is excluded from nucleoli and is not associated to specific nuclear structures but rather appears to be uniformly distributed. HMG1 can bind in vitro to reconstituted core nucleosomes but is not stably associated to chromatin in live cells. At metaphase, HMG1 is detached from condensed chromosomes, contrary to histone H1. During interphase, HMG1 readily diffuses out of nuclei after permeabilization of the nuclear membranes with detergents, whereas histone H1 remains associated to chromatin. These properties exclude a shared function for HMG1 and H1 in differentiated cells, in spite of their similar biochemical properties. HMG1 may be stably associated only to a very minor population of nucleosomes or may interact transiently with nucleosomes during dynamic processes of chromatin remodeling.


2016 ◽  
Vol 52 (36) ◽  
pp. 6166-6169 ◽  
Author(s):  
Firoj Ali ◽  
Anila H. A. ◽  
Nandaraj Taye ◽  
Devraj G. Mogare ◽  
Samit Chattopadhyay ◽  
...  

New chemodosimetric reagent for the specific detection of hydrazine in physiological conditions as well as for the mapping of its in situ generation in live Hct116 and HepG2 cells by enzymatic transformations.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1291 ◽  
Author(s):  
Pradeep Kumar Singh ◽  
Søren S.-R. Bohr ◽  
Nikos S. Hatzakis

Sophorolipids (SLs) are naturally produced glycolipids that acts as drug delivery for a spectrum of biomedical applications, including as an antibacterial antifungal and anticancer agent, where they induce apoptosis selectively in cancerous cells. Despite their utility, the mechanisms underlying their membrane interactions, and consequently cell entry, remains unknown. Here, we combined a single liposome assay to observe directly and quantify the kinetics of interaction of SL micelles with model membrane systems, and single particle studies on live cells to record their interaction with cell membranes and their cytotoxicity. Our single particle readouts revealed several repetitive docking events on individual liposomes and quantified how pH and membrane charges, which are known to vary in cancer cells, affect the docking of SL micelles on model membranes. Docking of sophorolipids micelles was found to be optimal at pH 6.5 and for membranes with −5% negatively charge lipids. Single particle studies on mammalian cells reveled a two-fold increased interaction on Hela cells as compared to HEK-293 cells. This is in line with our cell viability readouts recording an approximate two-fold increased cytotoxicity by SLs interactions for Hela cells as compared to HEK-293 cells. The combined in vitro and cell assays thus support the increased cytotoxicity of SLs on cancer cells to originate from optimal charge and pH interactions between membranes and SL assemblies. We anticipate studies combining quantitative single particle studies on model membranes and live cell may reveal hitherto unknown molecular insights on the interactions of sophorolipid and additional nanocarriers mechanism.


2006 ◽  
Vol 397 (2) ◽  
pp. 247-259 ◽  
Author(s):  
Mohamed B. Al-Fageeh ◽  
C. Mark Smales

Although the cold-shock response has now been studied in a number of different organisms for several decades, it is only in the last few years that we have begun to understand the molecular mechanisms that govern adaptation to cold stress. Notably, all organisms from prokaryotes to plants and higher eukaryotes respond to cold shock in a comparatively similar manner. The general response of cells to cold stress is the elite and rapid overexpression of a small group of proteins, the so-called CSPs (cold-shock proteins). The most well characterized CSP is CspA, the major CSP expressed in Escherichia coli upon temperature downshift. More recently, a number of reports have shown that exposing yeast or mammalian cells to sub-physiological temperatures (<30 or <37 °C respectively) invokes a co-ordinated cellular response involving modulation of transcription, translation, metabolism, the cell cycle and the cell cytoskeleton. In the present review, we summarize the regulation and role of cold-shock genes and proteins in the adaptive response upon decreased temperature with particular reference to yeast and in vitro cultured mammalian cells. Finally, we present an integrated model for the co-ordinated responses required to maintain the viability and integrity of mammalian cells upon mild hypothermic cold shock.


2020 ◽  
Author(s):  
Yongtao Geng ◽  
Alexandros Pertsinidis

SUMMARYVisualizing the 4D genome in live cells is essential for understanding its regulation. Programmable DNA-binding probes, such as fluorescent clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector (TALE) proteins have recently emerged as powerful tools for imaging specific genomic loci in live cells. However, many such systems rely on genetically-encoded components, often requiring multiple constructs that each must be separately optimized, thus limiting their use. Here we develop efficient and versatile systems, based on in vitro transcribed single-guide-RNAs (sgRNAs) and fluorescently-tagged recombinant, catalytically-inactivated Cas9 (dCas9) proteins. Controlled cell delivery of pre-assembled dCas9-sgRNA ribonucleoprotein (RNP) complexes enables robust genomic imaging in live cells and in early mouse embryos. We further demonstrate multiplex tagging of up to 3 genes, tracking detailed movements of chromatin segments and imaging spatial relationships between a distal enhancer and a target gene, with nanometer resolution in live cells. This simple and effective approach should facilitate visualizing chromatin dynamics and nuclear architecture in various living systems.


Sign in / Sign up

Export Citation Format

Share Document