scholarly journals Characterization and failure mode analyses of air plasma oxidized PDMS–PDMS bonding by peel testing

RSC Advances ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 1286-1289 ◽  
Author(s):  
C.-f. Chen ◽  
K. Wharton

(a) Specimen geometry for peel test. (b) Specimen setup in Instron without loading (c) and under loading. (Units in mm. Dimensions not to scale.)

Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1067 ◽  
Author(s):  
Aya E. Abusrafa ◽  
Salma Habib ◽  
Anton Popelka

Herein, the surface treatment of polyurethane (PU) films via air, O2, N2, Ar, and their mixtures were tested. The treatment was performed to incorporate new polar functionalities on the polymer surface and achieve improved hydrophilic characteristics. The PU films were subjected to RF low-temperature plasma treatment. It was found that plasma treatment immensely enhanced the hydrophilic surface properties of the PU films in comparison with those of the pristine samples; the maximum plasma effect occurred for the PU sample in the presence of air plasma with treatment time of 180 s at nominal power of 80 W. The surface topography was also found to vary with plasma exposure time and the type of gas being used due to the reactivity of the gaseous media. Roughness analysis revealed that at higher treatment times, the etching/degradation of the surface became more pronounced. Surface chemistry studies revealed increased O2 and N2 elemental groups on the surface upon exposure to O2, N2, air, and Ar. Additionally, the aging study revealed that samples treated in the presence of air and Ar were more stable in comparison to those of the other gases for both the contact angle and peel test measurements.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
K. A. Vijayalakshmi ◽  
M. Mekala ◽  
C. P. Yoganand ◽  
K. Navaneetha Pandiyaraj

The polycarbonate film (PC) surface was treated using glow discharge low-pressure air plasma. The modified surface was characterized by contact angle, FTIR, XRD, AFM, and XPS analysis. The surface-modified samples were further investigated using T-peel test for technical applications. The surface energy of the sample was estimated by measuring contact angle. The results show that, after plasma treatment, the root mean square (RMS) roughness of PC film was gradually increased with exposure time. Plasma treatment modified the chemical composition of the polymer surface and it made the surface to be highly hydrophilic. It was found that the air plasma treatment increases the polar component of PC film.


1989 ◽  
Vol 154 ◽  
Author(s):  
Ephraim Suhir

AbstractFilm adhesion, which is an important reliability factor in many microelectronic structures, is usually evaluated by peel testing. The loading and the peel angle in peel tests can be controlled best if these tests are “automatized”, which could be done, for instance, by applying air pressure to a film through an opening in the substrate. We consider a rectangular opening and determine, how this pressure is related to the peel (membrane) loading and peel angle for the given film material and thickness. Our study is based on von-Kármán's equations for large deflections of plates. The obtained results provide mechanical fundamentals for a rational physical design of a peel test vehicle.


2018 ◽  
Vol 26 (8-9) ◽  
pp. 431-445 ◽  
Author(s):  
Britto Satheesh ◽  
Maximilian Tonejc ◽  
Larissa Potakowskyj ◽  
Martin Pletz ◽  
Ewald Fauster ◽  
...  

Thermoplastic tapes have found a prominent place in automated tape placement (ATP), due to their reduced processing time. ATP also offers significant reduction in labour; however, the most attractive aspect is the use of its welding properties. Welding or diffusion bonding is necessary for two thermoplastic materials to bond to each other through the combined effect of heating and consolidation pressure. The work published in this article shows how various thermoplastic tape materials with different material properties are bonded to each other using a direct flame-type ATP process. Contact angle and differential scanning calorimetry measurements help understanding of the processing needs of the considered materials. The samples obtained after ATP are sent for peel testing using a wedge peel test principle, so that the force required to separate the bonding is identified. A T-peel test/pull test is also employed to cross-compare peel results obtained through wedge peel testing. The main aim of the work is to study the quality of connection between the two plies with different material interfaces and also how friction might contribute to peel force when wedge peeling is used. A numerical model is also implemented to show the effects of this friction.


1989 ◽  
Vol 153 ◽  
Author(s):  
Ephraim Suhir

AbstractFilm adhesion, which is an important reliability factor in many microelectronic structures, is usually evaluated by peel testing. The loading and the peel angle in peel tests can be controlled best if these tests are “automatized”, which could be done, for instance, by applying air pressure to a film through an opening in the substrate. We consider a rectangular opening and determine, how this pressure is related to the peel (membrane) loading and peel angle for the given film material and thickness. Our study is based on von-Kármán's equations for large deflections of plates. The obtained results provide mechanical fundamentals for a rational physical design of a peel test vehicle.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3672
Author(s):  
Mariusz Ł. Mamiński ◽  
Igor Novák ◽  
Matej Mičušík ◽  
Artur Małolepszy ◽  
Renata Toczyłowska-Mamińska

Poly(lactide) (PLA) films obtained by thermoforming or solution-casting were modified by diffuse coplanar surface barrier discharge plasma (300 W and 60 s). PLA films were used as hot-melt adhesive in joints in oak wood. It was demonstrated that lap shear strength increased from 3.4 to 8.2 MPa, respectively, for the untreated and plasma-treated series. Pull-off tests performed on particleboard for the untreated and treated PLA films showed 100% cohesive failure. Pull-off strength tests on solid oak demonstrated adhesion enhancement from 3.3 MPa with the adhesion failure mode to 6.6 MPa with the cohesion failure mode for untreated and treated PLA. XPS revealed that carbonyl oxygen content increased by two-to-three-fold, which was confirmed in the Fourier-transform infrared spectroscopy experiments of the treated PLA. The water contact angle decreased from 66.4° for the pristine PLA to 49.8° after treatment. Subsequently, the surface free energy increased from 47.9 to 61.05 mJ/m2. Thus, it was clearly proven that discharge air plasma can be an efficient tool to change surface properties and to strengthen adhesive interactions between PLA and woody substrates.


Author(s):  
J. R. Michael ◽  
A. D. Romig ◽  
D. R. Frear

Al with additions of Cu is commonly used as the conductor metallizations for integrated circuits, the Cu being added since it improves resistance to electromigration failure. As linewidths decrease to submicrometer dimensions, the current density carried by the interconnect increases dramatically and the probability of electromigration failure increases. To increase the robustness of the interconnect lines to this failure mode, an understanding of the mechanism by which Cu improves resistance to electromigration is needed. A number of theories have been proposed to account for role of Cu on electromigration behavior and many of the theories are dependent of the elemental Cu distribution in the interconnect line. However, there is an incomplete understanding of the distribution of Cu within the Al interconnect as a function of thermal history. In order to understand the role of Cu in reducing electromigration failures better, it is important to characterize the Cu distribution within the microstructure of the Al-Cu metallization.


2018 ◽  
Vol 18 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammed J Kadhim ◽  
Mohammed H Hafiz ◽  
Maryam A Ali Bash

The high temperature corrosion behavior of thermal barrier coating (TBC) systemconsisting of IN-738 LC superalloy substrate, air plasma sprayed Ni24.5Cr6Al0.4Y (wt%)bond coat and air plasma sprayed ZrO2-20 wt% ceria-3.6 wt% yttria (CYSZ) ceramic coatwere characterized. The upper surfaces of CYSZ covered with 30 mg/cm2 , mixed 45 wt%Na2SO4-55 wt% V2O5 salt were exposed at different temperatures from 800 to 1000 oC andinteraction times from 1 up to 8 h. The upper surface plan view of the coatings wereidentified for topography, roughness, chemical composition, phases and reaction productsusing scanning electron microscopy, energy dispersive spectroscopy, talysurf, and X-raydiffraction. XRD analyses of the plasma sprayed coatings after hot corrosion confirmed thephase transformation of nontransformable tetragonal (t') into monoclinic phase, presence ofYVO4 and CeVO4 products. Analysis of the hot corrosion CYSZ coating confirmed theformation of high volume fraction of YVO4, with low volume fractions of CeOV4 and CeO2.The formation of these compounds were combined with formation of monoclinic phase (m)from transformation of nontransformable tetragonal phase (t').


Author(s):  
A. V. Surov ◽  
A. V. Pavlov ◽  
A. V. Nikonov ◽  
R. V. Ovchinnikov ◽  
V. A. Spodobin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document