Mass preparation of micro/nano-powders of biochar with water-dispersibility and their potential application

2017 ◽  
Vol 41 (18) ◽  
pp. 9649-9657 ◽  
Author(s):  
Linjian Li ◽  
Kun Zhang ◽  
Li Chen ◽  
Zhong Huang ◽  
Guangbin Liu ◽  
...  

A novel strategy for micro/nano-structural and/or water dispersible biochars and their potential application in new and traditional fields.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2830
Author(s):  
Farzaneh Farivar ◽  
Pei Lay Yap ◽  
Tran Thanh Tung ◽  
Dusan Losic

Functionalization of pristine graphene to achieve high water dispersibility remains as a key obstacle owing to the high hydrophobicity and absence of reactive functional groups on the graphene surface. Herein, a green and simple modification approach to prepare highly dispersible functionalized graphene via thermal thiol-ene click reaction was successfully demonstrated on pristine graphene. Specific chemical functionalities (–COO, –NH2 and –S) on the thiol precursor (L-cysteine ethyl ester) were clicked directly on the sp2 carbon of graphene framework with grafting density of 1 unit L-cysteine per 113 carbon atoms on graphene. This functionalized graphene was confirmed with high atomic content of S (4.79 at % S) as well as the presence of C–S–C and N–H species on the L-cysteine functionalized graphene (FG-CYS). Raman spectroscopy evidently corroborated the modification of graphene to FG-CYS with an increased intensity ratio of D and G band, ID/IG ratio (0.3 to 0.7), full-width at half-maximum of G band, FWHM [G] (20.3 to 35.5) and FWHM [2D] (64.8 to 90.1). The use of ethanol as the reaction solvent instead of common organic solvents minimizes the chemical hazards exposure to humans and the environment. This direct attachment of multifunctional groups on the surface of pristine graphene is highly demanded for graphene ink formulations, coatings, adsorbents, sensors and supercapacitor applications.


2020 ◽  
Vol 20 (5) ◽  
pp. 2668-2674
Author(s):  
Hidetoshi Oguma ◽  
Eri Seitoku ◽  
Mami Mutoh ◽  
Saori Yoshizawa ◽  
Ko Nakanishi ◽  
...  

In this study, we investigated water-dispersible surface modification for size- and shape-controlled fullerene nanoparticles (C60P) based on a condensation reaction with di-amino alkane. This modification provided for water dispersibility of C60P and the capability for secondary modification as well. The resultant C60P particles have several useful physical properties: water-dispersibility for ease of injection; fluorescence for detection and quantification; and a characteristic morphology to assist identification. These properties will widely extend the applications of these particles, especially into the biological fields of bioimaging and drug delivery.


NANO ◽  
2015 ◽  
Vol 10 (01) ◽  
pp. 1550003
Author(s):  
Qi Li ◽  
Denian Li ◽  
Lijie Dong ◽  
Fan Sun ◽  
Jing Huang ◽  
...  

We present an efficient process for producing water dispersible graphene sheets from unassembled graphene–polyaniline nanohybrids. The result of atomic force microscopy reveals that over 80% of thus-prepared graphitic sheets are single layers with typical thickness of approximately 0.8 nm. The proportion of modifying molecules in the product is found to be as low as 3.0 wt.%, as determined by elemental analysis. Along with its fascinating water dispersibility and remarkably high electrical conductivity, such material is anticipated to be very promising for use in graphene-based nanoelectronics and high-performance composites.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 209
Author(s):  
Kun Pang ◽  
Shengzhang Dong ◽  
Peiying Hao ◽  
Tongtong Chen ◽  
Xinlong Wang ◽  
...  

The white-backed planthopper (WBPH) Sogatella furcifera is one of the most harmful pests of rice in Southeast Asia. The fat body of WBPH harbors intracellular yeast-like symbionts (YLS). YLS are vertically transmitted to WBPH offspring by transovarial infection. YLS play an important role in the WBPH life cycle. YLS diversity and function have been extensively studied in the brown planthopper (BPH) and small brown planthopper but not in WBPH, even though a novel strategy for controlling the BPH based on suppressing YLS has been proposed. Here, using denaturing gradient gel electrophoresis, we identified 12 unique fungal sequences among YLS of WBPH, and five of them represented uncultured fungi. We then fed WBPH with rice plants treated with different fungicides [70% propineb wettable powder (WP) (PR), 70% propamocarb hydrochloride aqueous solution (AS) (PH), 25% trifloxystrobin and 50% tebuconazole water-dispersible granules (WG) (TT), 40% pyrimethanil suspension concentrate (SC) (PY), and 50% iprodione SC (IP)] and evaluated their effects on YLS abundance and WBPH survival rate. Both YLS abundance and adult WBPH survival rate were significantly decreased upon feeding fungicide-treated rice plants, and exposure to 50% IP resulted in the strongest reduction. The abundance of two Sf-YLS species (Ascomycetes symbiotes and Cla-like symbiotes) was significantly reduced upon exposure to 50% IP. The counts of Ascomycetes symbiotes, the most abundant YLS species, were also suppressed by the other fungicides tested. In conclusion, 50% IP was the most effective fungicide, reducing YLS abundance and WBPH survival rate under controlled conditions, suggesting its potential use to control WBPH.


2020 ◽  
Vol 49 (22) ◽  
pp. 7328-7340 ◽  
Author(s):  
Bhupendra B. Srivastava ◽  
Santosh K. Gupta ◽  
Yang Li ◽  
Yuanbing Mao

This work reports on a green and facile approach for designing bright and persistent green luminescent Zn2GeO4:Mn2+ nano crystals with high quantum yield (∼52%) and water dispersibility designated for LEDs, security, and bio imaging.


Author(s):  
T. Kyotani ◽  
H. Orikasa

This article focuses on templated carbon nanotubes (CNTs) and how their cavities can be used for the synthesis of nanomaterials. In particular, it demonstrates how effectively the CNTs can be functionalized by the template carbonization technique. The article first describes the method for synthesizing CNTs and carbon nano-test-tubes (CNTTs). It then considers the controlled filling of magnetic materials into CNTTs, taking into account the electrochemical deposition of Ni-Fe alloy and the magnetic properties of NiFe-filled CNTTs. It also examines the synthesis of water-dispersible and magnetically responsive CNTTs, with emphasis on water dispersibility and the effect of magnetic interaction. Finally, it shows how the cavities of templated CNTs can be utilized as a reaction field for the hydrothermal synthesis of one-dimensional nanomaterials.


2011 ◽  
Vol 236-238 ◽  
pp. 2216-2220
Author(s):  
Dong Jian Shi ◽  
Ming Qing Chen ◽  
Mitsuru Akashi

Hyperbranched polyesters, poly(4-hydroxycinnamic acid-co-3, 4-dihydroxycinnamic acid) [P(4HCA-co-DHCA)], were synthesized by the heat-transesterification of bio-based monomers 4HCA and DHCA. The P(4HCA-co-DHCA) nanoparticles were formed after two homogeneous copolymer solutions were mixed in DMF and TFA solutions, which are both good solvents for the copolymer P(4HCA-co-DHCA). For the potential application of the nanoparticles composed of cinnamic acid derivatives, water-dispersible nanoparticles were prepared by introduction of Pluronic F127 into the P(4HCA-co-DHCA) nanoparticles. The photo-reactivities of the nanoparticles were investigated.


2016 ◽  
Vol 54 (1) ◽  
pp. 123
Author(s):  
Kieu T. B. Ngoc ◽  
Pham V. Luyen ◽  
Nguyen C. Khang ◽  
Pham H. Nam ◽  
Do H. Manh ◽  
...  

Magnetic CoFe2O4 nanoparticles were synthesised by one step synthetic method through thermal decomposition of Co and Fe precursors in triethylenetetramine solvent at high temperature. The advantage of this method is the ability to make monodisperse nanoparticles with high water-dispersibility and stability. The particle size can be tuned in the range of 7-11.3 nm by varying synthetic conditions. The obtained particles with small DLS size (less than 21 nm) are ready to disperse and stable in aqueous solution for weeks without any surface modification.


2019 ◽  
Vol 3 (1) ◽  
pp. 97-105
Author(s):  
Mary Zuccato ◽  
Dustin Shilling ◽  
David C. Fajgenbaum

Abstract There are ∼7000 rare diseases affecting 30 000 000 individuals in the U.S.A. 95% of these rare diseases do not have a single Food and Drug Administration-approved therapy. Relatively, limited progress has been made to develop new or repurpose existing therapies for these disorders, in part because traditional funding models are not as effective when applied to rare diseases. Due to the suboptimal research infrastructure and treatment options for Castleman disease, the Castleman Disease Collaborative Network (CDCN), founded in 2012, spearheaded a novel strategy for advancing biomedical research, the ‘Collaborative Network Approach’. At its heart, the Collaborative Network Approach leverages and integrates the entire community of stakeholders — patients, physicians and researchers — to identify and prioritize high-impact research questions. It then recruits the most qualified researchers to conduct these studies. In parallel, patients are empowered to fight back by supporting research through fundraising and providing their biospecimens and clinical data. This approach democratizes research, allowing the entire community to identify the most clinically relevant and pressing questions; any idea can be translated into a study rather than limiting research to the ideas proposed by researchers in grant applications. Preliminary results from the CDCN and other organizations that have followed its Collaborative Network Approach suggest that this model is generalizable across rare diseases.


Author(s):  
Taddese Mekonnen Ambay ◽  
Philipp Schick ◽  
Michael Grimm ◽  
Maximilian Sager ◽  
Felix Schneider ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document