The effect of PEGylated hollow gold nanoparticles on stem cell migration: potential application in tissue regeneration

Nanoscale ◽  
2017 ◽  
Vol 9 (28) ◽  
pp. 9848-9858 ◽  
Author(s):  
Maria del Mar Encabo-Berzosa ◽  
Maria Sancho-Albero ◽  
Alejandra Crespo ◽  
Vanesa Andreu ◽  
Victor Sebastian ◽  
...  

Mesenchymal stem cells (MSCs) not only can be differentiated into different cell types but also have tropism towards injured or inflamed tissues serving as repair cells.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Muthukumar Gunasekaran ◽  
Rachana Mishra ◽  
Progyaparamita Saha ◽  
Xuebin Fu ◽  
Mohamed Abdullah ◽  
...  

Stem cells transplantation is being explored as an effective therapy for heart diseases. However, majority of stem cell therapies for adult patients with myocardial infarction (MI) had mixed and inconsistent results implying chronological age may influence the effectiveness of regenerative therapies. Therefore, herein, we performed a head-to-head comparison between different, well-studied stem cell types to identify the superior regenerative cell type using rodent MI model.After our standard characterization for each stem cell type (FACS for cell surface markers), 1 million neonatal Cardiac Mesenchymal Stem cells (nMSCs), adult MSCs (aMSCs), adult derived cardiosphere derived cells (aCDCs), umbilical cord derived cells (UCBCs), Bone Marrow derived Mesenchymal Stem cells (BM-MSCs), or cell-free Iscove Modified Dulbecco Medium (IMDM as placebo control) were injected into athymic rat myocardial infarct model. Although all the tested groups significantly improved ejection fraction, nMSCs outperformed other stem cells in cardiac functional recovery. Additionally, nMSCs also showed significant increased cardiac functional recovery compared to aMSCs in wild type rat MI model. Mason trichrome staining with heart sections revealed that decreased fibrosis was evident on nMSCs injection compared to aMSCs in both athymic and wild type rat MI model. Myocardial sections from rats received nMSCs showed significantly reduced M1 macrophages (inflammatory) and increased M2 macrophages (anti-inflammatory) compared with sections from rats having received aMSCs and IMDM control. Pro and anti-inflammatory cytokines analyzed on sera collected on day 2 and 7 revealed that anti-inflammatory cytokine (IL10) was significantly increased and inflammatory cytokines (IL4 and IL12) reduced in nMSCs compared to aMSCs transplanted MI rat model.In conclusion, nMSCs demonstrated superior functional abilities, reduced fibrosis, inflammatory cells and cytokines compared to all the other cell types and with aMSCs demonstrating that nMSCs is an ideal stem cell type for therapeutic application in myocardial infarction.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2176
Author(s):  
Francesca Luzi ◽  
Ilaria Tortorella ◽  
Alessandro Di Michele ◽  
Franco Dominici ◽  
Chiara Argentati ◽  
...  

Herein we present the production of novel nanocomposite films consisting of polylactic acid (PLA) polymer and the inclusion of nanoparticles of lignin (LNP), ZnO and hybrid ZnO@LNP (ZnO, 3.5% wt, ICP), characterized by similar regular shapes and different diameter distribution (30–70 nm and 100–150 nm, respectively). The obtained set of binary, ternary and quaternary systems were similar in surface wettability and morphology but different in the tensile performance: while the presence of LNP and ZnO in PLA caused a reduction of elastic modulus, stress and deformation at break, the inclusion of ZnO@LNP increased the stiffness and tensile strength (σb = 65.9 MPa and EYoung = 3030 MPa) with respect to neat PLA (σb = 37.4 MPa and EYoung = 2280 MPa). Neat and nanocomposite PLA-derived films were suitable for adult human bone marrow-mesenchymal stem cells and adipose stem cell cultures, as showed by their viability and behavior comparable to control conditions. Both stem cell types adhered to the films’ surface by vinculin focal adhesion spots and responded to the films’ mechanical properties by orchestrating the F-actin–filamin A interaction. Collectively, our results support the biomedical application of neat- and nanocomposite-PLA films and, based on the absence of toxicity in seeded stem cells, provide a proof of principle of their safety for food packaging purposes.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Haojiang Li ◽  
Shi Shen ◽  
Haitao Fu ◽  
Zhenyong Wang ◽  
Xu Li ◽  
...  

The inflammatory response to chronic injury affects tissue regeneration and has become an important factor influencing the prognosis of patients. In previous stem cell treatments, it was revealed that stem cells not only have the ability for direct differentiation or regeneration in chronic tissue damage but also have a regulatory effect on the immune microenvironment. Stem cells can regulate the immune microenvironment during tissue repair and provide a good “soil” for tissue regeneration. In the current study, the regulation of immune cells by mesenchymal stem cells (MSCs) in the local tissue microenvironment and the tissue damage repair mechanisms are revealed. The application of the concepts of “seed” and “soil” has opened up new research avenues for regenerative medicine. Tissue engineering (TE) technology has been used in multiple tissues and organs using its biomimetic and cellular cell abilities, and scaffolds are now seen as an important part of building seed cell microenvironments. The effect of tissue engineering techniques on stem cell immune regulation is related to the shape and structure of the scaffold, the preinflammatory microenvironment constructed by the implanted scaffold, and the material selection of the scaffold. In the application of scaffold, stem cell technology has important applications in cartilage, bone, heart, and liver and other research fields. In this review, we separately explore the mechanism of MSCs in different tissue and organs through immunoregulation for tissue regeneration and MSC combined with 3D scaffolds to promote MSC immunoregulation to repair damaged tissues.


2019 ◽  
Vol 9 (7) ◽  
pp. 904-913
Author(s):  
Bing Yan ◽  
Ruining Liang ◽  
Meng Ji ◽  
Qi-Qige Wuyun ◽  
Weijun Guan ◽  
...  

Of all the significant researches that have taken place in isolation, culture and characterization of mesenchymal stem cells (MSCs), the field of kidney-derived mesenchymal stem cells (KMSCs) in Tibetan mastiff is still a blank. Therefore, the purpose of this study is to isolate, culture and characterize the Tibetan mastiff KMSCs. The KMSCs were successfully isolated from one-day year old Tibetan mastiff kidney, cultured for 16 passages and distinguished by two methods: immunofluorescence staining and RT-PCR. The Tibetan mastiff KMSCs expressed specific surface marker genes (VIM, CD44, FN1, CD90, CD109, CD73, FN1) and kidney marker gene PAX2. The proliferation ability of Tibetan mastiff KMSCs was measured through cell count and clonality. Furthermore, cells differentiated into different cell types (hepatocellular cells, osteogenic cells, adipogenic cells and chondrogenic cells) under special induced medium, and the marker genes of induced cells were identified with Immunofluorescence staining and RT-PCR. All of these results indicated that the Tibetan mastiff KMSCs were obtained successfully, which possessed certain characteristics of multipotent stem cells. Therefore, MSCs in Tibetan mastiff kidney hold potential for clinical applications for regenerative therapy and their further studies are waiting to be required to investigate their functions.


2013 ◽  
Vol 35 ◽  
pp. 573-579 ◽  
Author(s):  
Koichi Kawamoto ◽  
Masamitsu Konno ◽  
Hiroaki Nagano ◽  
Shimpei Nishikawa ◽  
Yoshito Tomimaru ◽  
...  

Background. Mesenchymal stem cells (MSCs), including adipose tissue-derived mesenchymal stem cells (ADSC), are multipotent and can differentiate into various cell types possessing unique immunomodulatory features. Several clinical trials have demonstrated the safety and possible efficacy of MSCs in organ transplantation. Thus, stem cell therapy is promising for tolerance induction. In this study, we assessed the reprogramming capacity of murine ADSCs and found that CD90 (Thy-1), originally discovered as a thymocyte antigen, could be a useful marker for cell therapy.Method. Murine ADSCs were isolated from B6 mice, sorted using a FACSAria cell sorter by selection ofCD90HiorCD90Lo, and then transduced with four standard factors (4F; Oct4, Sox2, Klf4, and c-Myc).Results. Unsorted,CD90Hi-sorted, andCD90Lo-sorted murine ADSCs were reprogrammed using standard 4F transduction.CD90HiADSCs showed increased numbers of alkaline phosphatase-positive colonies compared withCD90LoADSCs. The relative reprogramming efficiencies of unsorted,CD90Hi-sorted, andCD90Lo-sorted ADSCs were 100%, 116.5%, and 74.7%, respectively.CD90Hicells were more responsive to reprogramming.Conclusion.CD90HiADSCs had greater reprogramming capacity thanCD90LoADSCs, suggesting that ADSCs have heterogeneous subpopulations. Thus,CD90Hiselection presents an effective strategy to isolate a highly suppressive subpopulation for stem cell-based tolerance induction therapy.


RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 49839-49844 ◽  
Author(s):  
Y. Vida ◽  
D. Collado ◽  
F. Najera ◽  
S. Claros ◽  
J. Becerra ◽  
...  

Mesenchymal stem cells (MSCs) are promising candidates for a range of tissue regeneration applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Azizeh-Mitra Yousefi ◽  
Paul F. James ◽  
Rosa Akbarzadeh ◽  
Aswati Subramanian ◽  
Conor Flavin ◽  
...  

Mesenchymal stem cells (MSCs) have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs) represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes.


Sign in / Sign up

Export Citation Format

Share Document