One-pot solution synthesis of shape-controlled copper selenide nanostructures and their potential applications in photocatalysis and photothermal therapy

Nanoscale ◽  
2017 ◽  
Vol 9 (38) ◽  
pp. 14512-14519 ◽  
Author(s):  
Xianwen Wang ◽  
Zhaohua Miao ◽  
Yan Ma ◽  
Huajian Chen ◽  
Haisheng Qian ◽  
...  

Various copper selenide nanostructures (Cu2Se nanoparticles, CuSe nanoplates and CuSe2 nanosheets) could be obtained through a facile one-pot polyol method by only changing the feeding ratio of precursors.

Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1145 ◽  
Author(s):  
Xuan Liu ◽  
Zichao Li ◽  
Luming Zhou ◽  
Kuankuan Wang ◽  
Xihui Zhao ◽  
...  

The development of Ir-based catalyst with high efficiency for oxygen evolution reaction (OER) in acidic conditions is of great significance to the development of clean energy, but it still remains a significant challenge for shape controlled synthesis of Ir-based catalysts. This article presented a facile one-pot synthesis method that is based on polyol method for preparing IrCu microspheres. In the process of synthesis, formaldehyde solution and ethylene glycol were used as reducing agent and solvent, respectively, while poly(vinylpyrrolidone) was used as surfactant and dispersant, and all of them played important roles in the successful synthesis of Ir-Cu microspheres. The Ir-Cu microspheres, as synthesized, showed well sphere shape and smooth surface, while their alloy features were quite clear and the composition could be adjusted. Benefitting from the synergistic electronic effect between the Iridium and Cupric atoms from the alloy, the IrCu0.77 microspheres exhibited excellent electrocatalytic activity towards OER in 0.1 M HClO4 electrolyte, and to achieve 10 mA cm−2, IrCu0.77 microspheres only required the overpotential of 282 mV, which was much lower than that of commercial Ir/C catalysts.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 906
Author(s):  
Le Minh Tu Phan ◽  
Thuy Anh Thu Vo ◽  
Thi Xoan Hoang ◽  
Sungbo Cho

Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. This comprehensive review summarizes the current development of graphene-integrated hydrogel composites and their application in photothermal biomedicine. The latest advances in the synthesis strategies, unique properties and potential applications of photothermal-responsive GGel nanocomposites in biomedical fields are introduced in detail. This review aims to provide a better understanding of the current progress in GGel material fabrication, photothermal properties and potential PTT-based biomedical applications, thereby aiding in more research efforts to facilitate the further advancement of photothermal biomedicine.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Haliza Katas ◽  
Noor Zianah Moden ◽  
Chei Sin Lim ◽  
Terence Celesistinus ◽  
Jie Yee Chan ◽  
...  

Biosynthesized or biogenic metallic nanoparticles, particularly silver and gold nanoparticles (AgNPs and AuNPs, respectively), have been increasingly used because of their advantages, including high stability and loading capacity; moreover, these nanoparticles are synthesized using a green and cost-effective method. Previous studies have investigated reducing and/or stabilizing agents from various biological sources, including plants, microorganisms, and marine-derived products, using either a one-pot or a multistep process at different conditions. In addition, extensive studies have been performed to determine the biological or pharmacological effects of these nanoparticles, such as antimicrobial, antitumor, anti-inflammatory, and antioxidant effects. In the recent years, chitosan, a natural cationic polysaccharide, has been increasingly investigated as a reducing and/or stabilizing agent in the synthesis of biogenic metallic nanoparticles with potential applications in nanomedicine. Here, we have reviewed the mechanism of biosynthesis and potential applications of AgNPs and AuNPs and their chitosan-mediated nanocomposites in nanomedicine.


RSC Advances ◽  
2019 ◽  
Vol 9 (63) ◽  
pp. 36558-36569
Author(s):  
Faning Leng ◽  
Yali Liu ◽  
Guobing Li ◽  
Wenjing Lai ◽  
Qian Zhang ◽  
...  

Cu2−xSe nanoparticles (Cu2−xSe NPs) are widely used for optical diagnostic imaging and photothermal therapy due to their strong near-infrared (NIR) optical absorption.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 387 ◽  
Author(s):  
Caoxing Huang ◽  
Huiling Dong ◽  
Yan Su ◽  
Yan Wu ◽  
Robert Narron ◽  
...  

The carbon quantum dot (CQD), a fluorescent carbon nanoparticle, has attracted considerable interest due to its photoluminescent property and promising applications in cell imaging and bioimaging. In this work, biocompatible, photostable, and sustainably sourced CQDs were synthesized from byproducts derived from a biorefinery process using one-pot hydrothermal treatment. The main components of byproducts were the degradation products (autohydrolyzate) of biomass pretreated by autohydrolysis. The as-synthesized CQDs had a size distribution from 2.0–6.0 nm and had high percentage of sp2 and sp3 carbon groups. The CQDs showed blue-green fluorescence with a quantum yield of ~13%, and the fluorescence behaviors were found to be stable with strong resistance to photobleaching and temperature change. In addition, it is found that the as-synthesized CQDs could be used for imaging of cells and tumors, which show potential applications in bioimaging and related fields such as phototherapy and imaging.


RSC Advances ◽  
2018 ◽  
Vol 8 (65) ◽  
pp. 37433-37440 ◽  
Author(s):  
Huicong Zhang ◽  
Xuandong Wang ◽  
Peiyuan Wang ◽  
Rong Liu ◽  
Xuemei Hou ◽  
...  

Polydopamine-doped mesoporous silica nanocomposites (PMSNs) were controllably synthesized by a one-pot approach. They were demonstrated to be good biodegradability, pH-responsive drug release and targeting synergistic chemo-photothermal therapy.


2017 ◽  
Vol 13 ◽  
pp. 2023-2027 ◽  
Author(s):  
Hao Wang ◽  
Cui Chen ◽  
Weibing Liu ◽  
Zhibo Zhu

We developed a direct vicinal difunctionalization of alkenes with iodine and TBHP at room temperature. This iodination and peroxidation in a one-pot synthesis produces 1-(tert-butylperoxy)-2-iodoethanes, which are inaccessible through conventional synthetic methods. This method generates multiple radical intermediates in situ and has excellent regioselectivity, a broad substrate scope and mild conditions. The iodine and peroxide groups of 1-(tert-butylperoxy)-2-iodoethanes have several potential applications and allow further chemical modifications, enabling the preparation of synthetically valuable molecules.


2016 ◽  
Vol 2 (8) ◽  
pp. e1601031 ◽  
Author(s):  
Congqing Zhu ◽  
Caixia Yang ◽  
Yongheng Wang ◽  
Gan Lin ◽  
Yuhui Yang ◽  
...  

The coordinating atoms in polydentate chelates are primarily heteroatoms. We present the first examples of pentadentate chelates with all binding atoms of the chelating agent being carbon atoms, denoted as CCCCC chelates. Having up to five metal-carbon bonds in the equatorial plane has not been previously observed in transition metal chemistry. Density functional theory calculations showed that the planar metallacycle has extended Craig-Möbius aromaticity arising from 12-center–12-electron dπ-pπ π-conjugation. These planar chelates have broad absorption in the ultraviolet-visible–near-infrared region and, thus, notable photothermal performance upon irradiation by an 808-nm laser, indicating that these chelates have potential applications in photothermal therapy. The combination of facile synthesis, high stability, and broad absorption of these complexes could make the polydentate carbon chain a novel building block in coordination chemistry.


Sign in / Sign up

Export Citation Format

Share Document