An intelligent NIR-responsive chelate copper-based anticancer nanoplatform for synergistic tumor targeted chemo-phototherapy

Nanoscale ◽  
2017 ◽  
Vol 9 (40) ◽  
pp. 15685-15695 ◽  
Author(s):  
Qianhua Feng ◽  
Wanxia Zhang ◽  
Yuzhen Li ◽  
Xuemei Yang ◽  
Yongwei Hao ◽  
...  

The chelate copper-based anticancer drug bleomycin (BLM) is usually believed to bind metal ions especially Cu(ii) to generate the “activated BLM” for DNA cleavage. This study offered a platform for simultaneous NIR-mediated temperature-responsive BLM and copper ion release, which further initiated the generation of the “activated BLM”.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1099
Author(s):  
Sheng-Chun Hung ◽  
Chih-Cheng Lu ◽  
Yu-Ting Wu

The optical characteristics of copper ion detection, such as the photometric absorbance of specific wavelengths, exhibit significant intensity change upon incident light into the aqueous solutions with different concentrations of metal ions due to the electron transition in the orbit. In this study, we developed a low-cost, small-size and fast-response photoelectric sensing prototype as an optic sensor for copper (Cu) ions detection by utilizing the principle of optical absorption. We quantified the change of optical absorbance from infra-red (IR) light emitting diodes (LEDs) upon different concentrations of copper ions and the transmitted optical signals were transferred to the corresponding output voltage through a phototransistor and circuit integrated in the photoelectric sensing system. The optic sensor for copper (Cu) ions demonstrated not only excellent specificity with other metal ions such as cadmium (Cd), nickel (Ni), iron (Fe) and chloride (Cl) ions in the same aqueous solution but also satisfactory linearity and reproducibility. The sensitivity of the preliminary sensing system for copper ions was 29 mV/ppm from 0 to 1000 ppm. In addition, significant ion-selective characteristics and anti-interference capability were also observed in the experiments by the proposed approach.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1439
Author(s):  
Akiko Yamamoto ◽  
Shinji Tanaka ◽  
Keiichiro Ohishi

Copper (Cu) and its alloys have bactericidal activity known as “contact killing” with degradation of nucleic acids inside the bacteria, which is beneficial to inhibit horizontal gene transfer (HGF). In order to understand the nucleic acid degradability of Cu and its alloy surfaces, we developed a new in vitro method to quantitatively evaluate it by a swab method under a “dry” condition and compared it with that of commercially available antibacterial materials such as antibacterial stainless steel, pure silver, and antibacterial resins. As a result, only Cu and its alloys showed continuous degradation of nucleic acids for up to 6 h of contact time. The nucleic acid degradability levels of the Cu alloys and other antibacterial materials correlate to their antibacterial activities evaluated by a film method referring to JIS Z 2801:2012 for Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Nucleic acid degradation by copper (I) and (II) chlorides was confirmed at the ranges over 10 mM and 1–20 mM, respectively, suggesting that the copper ion release may be responsible for the degradation of the nucleic acids on Cu and its alloy surfaces. In conclusion, the higher Cu content in the alloys gave higher nucleic acid degradability and higher antibacterial activities.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012010
Author(s):  
B Haryanto ◽  
S E Saragih ◽  
R Tambun ◽  
H Harahap ◽  
K Manik ◽  
...  

Abstract Carbon charcoal was made from rambutan rods and used as an adsorbent. A gram 70/100 mesh size of adsorbent was then used to adsorb 100 ml of copper ion solution with a 70 ppm concentration. In this investigation, the batch procedure was used without shaking (naturally). The charcoal carbon rambutan ability to remove the copper ion was measured by AAS. The percentage result was 48,135% or about 33,694 ppm. SEM and EDX instrument analysis have applied to confirm the presence of copper ions on the adsorbent surface. The copper ion was found at a concentration of 0.09 percent of the total weight. The carbon charcoal adsorbent in rambutan rods has the ability to purify the water contaminated by metal ions.


2020 ◽  
Vol 36 (7) ◽  
pp. 467-476
Author(s):  
Halis Boran

Metal-based nanoparticles (NPs) can release metal ions that are toxic to aquatic organisms; however, whether the toxicity is from metal ions rather than unique “nano-scale” effects of the NPs is unresolved. The present study aimed to compare the toxicity of Cu2+ and Cu-NPs in larval zebrafish ( Danio rerio) to clarify whether toxic effects are attributable to release of Cu ions and to determine the effect of the chelating agent ethylenediaminetetraacetic acid (EDTA) and calcium hardness (as CaCO3) on the Cu toxicity. First, the acute toxicity (96-h lethality) of Cu-NPs was determined in comparison to aqueous Cu in larvae exposed to CuSO4, and subsequently, sublethal tests with Cu-NPs and CuSO4 were conducted with additions of EDTA or calcium ions to evaluate alterations in expression of metallothionein-2 ( MT2) gene transcripts (quantitative real-time polymerase chain reaction). Acute toxicity of Cu in larvae exposed to CuSO4 was greater (LC50 = 226 µg Cu/L) than for larvae exposed to Cu-NPs (LC50 = 648 µg Cu/L). The expression of MT2 increased with Cu concentration ( p < 0.05), and the slope of the linear regression was significantly greater in fish exposed to CuSO4 (slope = 0.090) compared to Cu-NPs (slope = 0.011). Cu2+ was 2.9-fold more toxic than Cu-NPs. The presence of 5 mg/L EDTA and 220 mg/L CaCO3 significantly reduced the expression of MT2 (1.8-fold for EDTA, 2.3-fold for CaCO3) in larvae exposed to CuSO4. For larvae exposed to Cu-NPs, the presence of EDTA reduced the expression of MT2 (1.7-fold) relative to Cu-NP concentration. While Cu-NPs induced MT2 expression, the differences in concentration relationships of MT2 expression between Cu-NPs and CuSO4 indicated that factors other than release of Cu ions from Cu-NPs influenced acute toxicity of Cu-NPs. The conclusion drawn from this ecotoxicological risk assessment was that EDTA and calcium significantly decreased Cu toxicity in freshwater fish.


2019 ◽  
Vol 158 (04) ◽  
pp. 369-382 ◽  
Author(s):  
Jörg Lützner ◽  
Klaus-Peter Günther ◽  
Anne Postler ◽  
Michael Morlock

AbstractAll metal implants in human bodies corrode which results in metal ions release. This is not necessarily a problem and represents for most patients no hazard. However, if a critical metal ion concentration is exceeded, local or rarely systemic problems can occur. This article summarizes the mechanisms of metal ion release and its clinical consequences. Several situations can result in increased metal ion release: metal-on-metal hip arthroplasties with increased wear, increased micromotion at taper interfaces, direct metal-metal contact (polyethylene wear, impingement), erroneously used metal heads after ceramic head fracture. Possible problems are in most cases located close to the concerned joint. Furthermore, there are reports about toxic damage to several organs. Most of these reports refer to erroneously used metal heads in revisions after a broken ceramic head. There is currently no evidence of carcinogenic or teratogenic effects of implants but data is not sufficient to exclude possible effects. Cobalt and chromium blood levels (favorably in whole blood) should be measured in patients with suspected elevated metal ions. According to current knowledge levels below 2 µg/l seem to be uncritical, levels between 2 and 7 µg/l are considered borderline with unknown biological consequences and levels above 7 µg/l indicate a local problem which should be further diagnosed. Metal ion levels always need to be interpreted together with clinical symptoms and imaging results.


2011 ◽  
Vol 6 (9) ◽  
pp. 934-942 ◽  
Author(s):  
Kommireddy Vasu ◽  
Matheshwaran Saravanan ◽  
Valakunja Nagaraja

Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 287 ◽  
Author(s):  
Gratiela Tihan ◽  
Roxana Zgarian ◽  
Elena Berteanu ◽  
Daniela Ionita ◽  
Georgeta Totea ◽  
...  

In this paper, we present the fabrication and characterization of new chitosan-based membranes while using a new biotechnology for immobilizing alkaline phosphatase (ALP). This technology involved metal ions incorporation to develop new biopolymeric supports. The chemical structure and morphological characteristics of proposed membranes were evaluated by infrared spectroscopy (FT-IR) and the scanning electron microscopy technique (SEM). The inductively coupled plasma mass spectrometry (ICP-MS) evidenced the metal ion release in time. Moreover, the effect of Mg2+ on the enzymatic activity and the antibacterial investigations while using Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria, hemolysis, and biocompatibility behavior were studied. Immobilizing ALP into the chitosan membranes composition followed by the incorporation of Mg2+ led to polymeric supports with enhanced cellular viability when comparing to chitosan-based membranes without Mg2+. The results obtained evidenced promising performance in biomedical applications for the new biopolymeric supports that are based on chitosan, ALP, and metal ions.


Biochemistry ◽  
2009 ◽  
Vol 48 (9) ◽  
pp. 1862-1869 ◽  
Author(s):  
Joseph E. Deweese ◽  
Amber M. Burch ◽  
Alex B. Burgin ◽  
Neil Osheroff

1999 ◽  
Vol 288 (1) ◽  
pp. 87-103 ◽  
Author(s):  
Geoffrey S. Baldwin ◽  
Richard B. Sessions ◽  
Symon G. Erskine ◽  
Stephen E. Halford

Sign in / Sign up

Export Citation Format

Share Document