Structure and rheology of polyelectrolyte complex coacervates

Soft Matter ◽  
2018 ◽  
Vol 14 (13) ◽  
pp. 2454-2464 ◽  
Author(s):  
Amanda B. Marciel ◽  
Samanvaya Srivastava ◽  
Matthew V. Tirrell

Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented.

2016 ◽  
Vol 857 ◽  
pp. 447-451
Author(s):  
Nur Syairah Muhamad Rahim ◽  
Norlaily Ahmad ◽  
Dzaraini Kamarun

The formation of polyelectrolyte complexes (PECs) between chitosan and alginate has been widely investigated for many pharmaceutical and biomedical uses. Ionotropic gelation resulted from the crosslinking of polyelectrolytes (PEs) in the presence of ionic crosslinkers to form hydrogels. The most widely used ionic crosslinker for chitosan is sodium tripolyphosphate (NaTPP); and Ca2+ ions for alginates. The use of these cross-linkers to prepare PECs of chitosan and alginates resulted in hydrogels of similar moieties: chitosan-chitosan and alginate-alginate rather than the sought for hybrid chitosan-alginate PECs. Calcium tripolyphosphate (CaTPP) is a single molecule ionic gelator of chitosan and alginate that have the capability of producing the true hybrid compound of chitosan/alginate polyelectrolyte complex. This paper reported the synthesis of calcium tripolyphosphate and the preparation of a hybrid chitosan/alginate PECs using this newly identified ionic gelator. The newly-synthesized ionic gelator was characterized using ICP-OES; the PECs thereof prepared were characterized using TGA and SEM. The degradation temperature of the prepared PECs is higher than the degradation temperatures of the individual chitosan and alginates. SEM image of the prepared PECs showed rougher surfaces compared to the images of the individual chitosan and alginate compound. Both TGA and SEM revealed the possibility of the newly prepared material to be of the PECs sought for.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 927 ◽  
Author(s):  
Jiří Smilek ◽  
Sabína Jarábková ◽  
Tomáš Velcer ◽  
Miloslav Pekař

The rheological properties of hydrogels prepared by physical interactions between oppositely charged polyelectrolyte and surfactant in micellar form were studied. Specifically, hyaluronan was employed as a negatively charged polyelectrolyte and Septonex (carbethopendecinium bromide) as a cationic surfactant. Amino-modified dextran was used as a positively charged polyelectrolyte interacting with sodium dodecylsulphate as an anionic surfactant. The effects of the preparation method, surfactant concentration, ionic strength (the concentration of NaCl background electrolyte), pH (buffers), multivalent cations, and elevated temperature on the properties were investigated. The formation of gels required an optimum ionic strength (set by the NaCl solution), ranging from 0.15–0.3 M regardless of the type of hydrogel system and surfactant concentration. The other compositional effects and the effect of temperature were dependent on the polyelectrolyte type or its molecular weight. General differences between the behaviour of hyaluronan-based and cationized dextran-based materials were attributed to differences in the chain conformations of the two biopolymers and in the accessibility of their charged groups.


RSC Advances ◽  
2015 ◽  
Vol 5 (78) ◽  
pp. 63580-63587 ◽  
Author(s):  
Xinzhen Zhao ◽  
Aiwen Qin ◽  
Dapeng Liu ◽  
Chunju He

Surface anchored polyelectrolyte complex significantly improved the antifouling performance of PVDF membrane.


2021 ◽  
Vol 22 (16) ◽  
pp. 8381
Author(s):  
Natallia V. Dubashynskaya ◽  
Sergei V. Raik ◽  
Yaroslav A. Dubrovskii ◽  
Elena V. Demyanova ◽  
Elena S. Shcherbakova ◽  
...  

Improving the therapeutic characteristics of antibiotics is an effective strategy for controlling the growth of multidrug-resistant Gram-negative microorganisms. The purpose of this study was to develop a colistin (CT) delivery system based on hyaluronic acid (HA) and the water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The CT delivery system was a polyelectrolyte complex (PEC) obtained by interpolymeric interactions between the HA polyanion and the DEAECS polycation, with simultaneous inclusion of positively charged CT molecules into the resulting complex. The developed PEC had a hydrodynamic diameter of 210–250 nm and a negative surface charge (ζ-potential = −19 mV); the encapsulation and loading efficiencies were 100 and 16.7%, respectively. The developed CT delivery systems were characterized by modified release (30–40% and 85–90% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro experiments showed that the encapsulation of CT in polysaccharide carriers did not reduce its antimicrobial activity, as the minimum inhibitory concentrations against Pseudomonas aeruginosa of both encapsulated CT and pure CT were 1 μg/mL.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ritesh Kumar Tiwari ◽  
Lalit Singh ◽  
Vaibhav Rastogi

: The polyelectrolyte complexes (PECs) are adaptable definitions shaped by electrostatic interaction between biopolymers with inverse charges. Polyelectrolyte edifices comprise an exceptional class of polymeric mixtures comprising of polyions with inverse charges, which can be charged either cationically or anionically. Significant advancement has been made in the course of recent years towards new medication conveyance frameworks. The subject of broad essential and applied exploration has been on the marvel of interpolymer collaborations and polyelectrolyte complex development. Basically and applied polyelectrolytes raise on the grounds that the advantages of supportability are perceived in the scholarly world and in modern examination settings. Polyelectrolytes are a form of polymer that has endless ionizable practical arrangements. Ionized polyelectrolytes in arrangement can form a complex with oppositely charged particle called a polyelectrolyte complex. The review article emphasizes on PECs and their classification, characterization, as well as a critical analysis of the current research and applicability in drug delivery technology.


2019 ◽  
Vol 819 ◽  
pp. 27-32
Author(s):  
Sucharat Limsitthichaikoon ◽  
Chutima Sinsuebpol

Electrostatic interactions of polymeric charges become one of the important factors to form the polyelectrolyte complexes (PECs). In this work, PECs has successfully created through the interaction between positive charges of chitosan (CS) and negative charges of pectin (PE) based on the effect of pH and pKa of the polymers. The formation of PECs provides small particle size, positive surface charge, and high %entrapment efficiency (%EE) after loaded metronidazole (MTZ). Dropwise addition of PE solution into CS solution was carried out to form PECs. A certain concentration of chitosan and pectin fixed at ratio 3:1 while the pH of both polymers varied as pH 1, 3, 5, and 9. The alterations after forming PECs observed particle size, zeta potential, and turbidity of the solution along with FTIR, DSC, and TAG. Precipitation of PECs solution was found in the fixed pH 5 of PE solution dropwise into pH 7 and 9 CS solution, which referred to the unstable of the PECs system. The pH 1 and 9 of PE and CS obtained the large size which about 600-1200 nm, while zeta potential found a low positive charge of 5.54-11.90 mV. Thus, only the fixed pH 5 of CS solution and pH 3, 5, or 7 of PE solution to form PECs were used to load MTZ. After loaded MTZ, the particle size of the PECs was about 400-500 nm and the zeta potential was about 20-50 mV. Electrostatic interactions resulted from FTIR detected the changes in amino groups of CS and carboxyl groups of PE. Thermal analysis on DSC for determinations of melting points or transition temperatures and TGA to monitor weight loss by heat were confirmed the PECs and MTZ-PECs formation. The pH 5 of PE interacts with pH 5 of CS offered the smallest particle size as 438 nm, zeta potential about 23.5 mV, and the highest percentage of EE as about 50% of the drug-loaded. The pH 5 of PE and CS were the pH-responsive to the pKa, thus, the acidity of the polymers may provide a suitable condition to form the appropriate polyelectrolyte complexes. Keywords: Polyelectrolyte complex, polycation, polyanion, charge density


Holzforschung ◽  
2009 ◽  
Vol 63 (1) ◽  
Author(s):  
Xianhua Feng ◽  
Dan Zhang ◽  
Robert Pelton

Abstract Polyelectrolyte complexes are routinely used as adhesives to strengthen fiber-fiber contacts in paper. This work evaluates different approaches to putting the polyelectrolyte complexes into the adhesive joint. Instead of conventional wet paper mechanical testing, a wet cellulose film delamination technique was employed permitting direct comparison of different approaches to applying the polymeric adhesive to the cellulose-cellulose joint. The adhesion strengths of layer-by-layer polyelectrolyte complexes assembled on wet cellulose films and the adhesion strengths of the corresponding polyelectrolyte complex coated on wet cellulose films are compared. The wet adhesion strengths were measured by peel delamination. The polyelectrolyte complexes were based on mixtures of cationic polyvinylamine (PVAm) and anionic carboxymethyl cellulose (CMC). The layer-by-layer assemblies of PVAm and CMC yielded stronger wet adhesion than did coated films of the corresponding colloidal complexes or pure PVAm at the same coverage (mass of polymer/joint area). The role of CMC was to give ionic crosslinks with PVAm which increase the cohesive strength of thick PVAm layers. PVAm gives much stronger wet adhesion to cellulose compared to the oxidized silicon wafer surfaces. It is proposed that imine and aminal bonds can form between the polyamine and hemiacetals in the regenerated cellulose films which cannot form with silica.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 389
Author(s):  
Riccardo Ladiè ◽  
Cesare Cosentino ◽  
Irene Tagliaro ◽  
Carlo Antonini ◽  
Giulio Bianchini ◽  
...  

Non-covalent interactions in supramolecular chemistry provide useful systems to understand biological processes, and self-assembly systems are suitable assets to build-up innovative products for biomedical applications. In this field, polyelectrolyte complexes are interesting, especially when polysaccharides are involved, due to their non-toxicity and bio-absorbability. In this work, we investigated a polyelectrolyte formed by hyaluronic acid (HA), a negatively charged linear polysaccharide, with Chitlac (Ch), a positively charged lactose-modified chitosan. The aim of the study was the investigation of a novel Ch–HA polyelectrolyte complex, to understand the interaction between the two polysaccharides and the stability towards enzymatic activity. By means of gel permeation chromatography–triple detector array (GPC–TDA), nuclear magnetic resonance (NMR), dynamic viscosity, Zeta Potential and scanning electron microscopy (SEM), the polyelectrolyte complex properties were identified and compared to individual polysaccharides. The complex showed monodisperse molecular weight distribution, high viscosity, negative charge, and could be degraded by specific enzymes, such as hyaluronidase and lysozyme. The results suggest a close interaction between the two polysaccharides in the complex, which could be considered a self-assembly system.


Sign in / Sign up

Export Citation Format

Share Document