scholarly journals Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures

2018 ◽  
Vol 47 (11) ◽  
pp. 3788-3803 ◽  
Author(s):  
S. Sevim ◽  
A. Sorrenti ◽  
C. Franco ◽  
S. Furukawa ◽  
S. Pané ◽  
...  

Microfluidics enables selection of different pathways in self-assembly processes, while allowing for an exquisite control over the processing of self-assembled materials.

2019 ◽  
Vol 116 (10) ◽  
pp. 4090-4098 ◽  
Author(s):  
Yibo Zhao ◽  
Liqian Zhang ◽  
Xu Li ◽  
Yanhui Shi ◽  
Ruru Ding ◽  
...  

Six tetranuclear rectangular metallacycles were synthesized via the [2+2] coordination-driven self-assembly of imidazole-based ditopic donor 1,4-bis(imidazole-1-yl)benzene and 1,3-bis(imidazol-1-yl)benzene, with dinuclear half-sandwichp-cymene ruthenium(II) acceptors [Ru2(µ-η4-oxalato)(η6-p-cymene)2](SO3CF3)2, [Ru2(µ-η4-2,5-dioxido-1,4-benzoquinonato)(η6-p-cymene)2](SO3CF3)2and [Ru2(µ-η4-5,8-dioxido-1,4-naphtoquinonato)(η6-p-cymene)2](SO3CF3)2, respectively. Likewise, three hexanuclear trigonal prismatic metallacages were prepared via the [2+3] self-assembly of tritopic donor of 1,3,5-tri(1H-imidazol-1-yl)benzene with these ruthenium(II) acceptors respectively. Self-selection of the single symmetrical and stable metallacycle and cage was observed although there is the possibility of forming different conformational isomeric products due to different binding modes of these imidazole-based donors. The self-assembled macrocycles and cage containing the 5,8-dioxido-1,4-naphtoquinonato (donq) spacer exhibited good anticancer activity on all tested cancer cell lines (HCT-116, MDA-MB-231, MCF-7, HeLa, A549, and HepG-2), and showed decreased cytotoxicities in HBE and THLE-2 normal cells. The effect of Ru and imidazole moiety of these assemblies on the anticancer activity was discussed. The study of binding ability of these donq-based Ru assemblies with ctDNA indicated that the complex 9 with 180° linear 1 ligand has the highest bonding constantKbto ctDNA.


2015 ◽  
Vol 44 (47) ◽  
pp. 20493-20501 ◽  
Author(s):  
Prodip Howlader ◽  
Sandip Mukherjee ◽  
Rajat Saha ◽  
Partha Sarathi Mukherjee

Different binding conformations of 3-(5-(pyridin-3-yl)-1H-1,2,4-triazol-3-yl)pyridine (L) yielded a self-assembled 3D cube and 2D macrocycles selectively depending on the nature of acceptors. Selection of a particular conformation of the donor L by a specific metal acceptor during self-assembly was corroborated well by a theoretical study.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2020 ◽  
Author(s):  
Daniel B. Straus ◽  
Robert J. Cava

The design of new chiral materials usually requires stereoselective organic synthesis to create molecules with chiral centers. Less commonly, achiral molecules can self-assemble into chiral materials, despite the absence of intrinsic molecular chirality. Here, we demonstrate the assembly of high-symmetry molecules into a chiral van der Waals structure by synthesizing crystals of C<sub>60</sub>(SnI<sub>4</sub>)<sub>2</sub> from icosahedral buckminsterfullerene (C<sub>60</sub>) and tetrahedral SnI4 molecules through spontaneous self-assembly. The SnI<sub>4</sub> tetrahedra template the Sn atoms into a chiral cubic three-connected net of the SrSi<sub>2</sub> type that is held together by van der Waals forces. Our results represent the remarkable emergence of a self-assembled chiral material from two of the most highly symmetric molecules, demonstrating that almost any molecular, nanocrystalline, or engineered precursor can be considered when designing chiral assemblies.


2019 ◽  
Author(s):  
Siddhartha Laghuvarapu ◽  
Yashaswi Pathak ◽  
U. Deva Priyakumar

Recent advances in artificial intelligence along with development of large datasets of energies calculated using quantum mechanical (QM)/density functional theory (DFT) methods have enabled prediction of accurate molecular energies at reasonably low computational cost. However, machine learning models that have been reported so far requires the atomic positions obtained from geometry optimizations using high level QM/DFT methods as input in order to predict the energies, and do not allow for geometry optimization. In this paper, a transferable and molecule-size independent machine learning model (BAND NN) based on a chemically intuitive representation inspired by molecular mechanics force fields is presented. The model predicts the atomization energies of equilibrium and non-equilibrium structures as sum of energy contributions from bonds (B), angles (A), nonbonds (N) and dihedrals (D) at remarkable accuracy. The robustness of the proposed model is further validated by calculations that span over the conformational, configurational and reaction space. The transferability of this model on systems larger than the ones in the dataset is demonstrated by performing calculations on select large molecules. Importantly, employing the BAND NN model, it is possible to perform geometry optimizations starting from non-equilibrium structures along with predicting their energies.


2021 ◽  
Vol 11 (7) ◽  
pp. 3254
Author(s):  
Marco Pisco ◽  
Francesco Galeotti

The realization of advanced optical fiber probes demands the integration of materials and structures on optical fibers with micro- and nanoscale definition. Although researchers often choose complex nanofabrication tools to implement their designs, the migration from proof-of-principle devices to mass production lab-on-fiber devices requires the development of sustainable and reliable technology for cost-effective production. To make it possible, continuous efforts are devoted to applying bottom-up nanofabrication based on self-assembly to decorate the optical fiber with highly ordered photonic structures. The main challenges still pertain to “order” attainment and the limited number of implementable geometries. In this review, we try to shed light on the importance of self-assembled ordered patterns for lab-on-fiber technology. After a brief presentation of the light manipulation possibilities concerned with ordered structures, and of the new prospects offered by aperiodically ordered structures, we briefly recall how the bottom-up approach can be applied to create ordered patterns on the optical fiber. Then, we present un-attempted methodologies, which can enlarge the set of achievable structures, and can potentially improve the yielding rate in finely ordered self-assembled optical fiber probes by eliminating undesired defects and increasing the order by post-processing treatments. Finally, we discuss the available tools to quantify the degree of order in the obtained photonic structures, by suggesting the use of key performance figures of merit in order to systematically evaluate to what extent the pattern is really “ordered”. We hope such a collection of articles and discussion herein could inspire new directions and hint at best practices to fully exploit the benefits inherent to self-organization phenomena leading to ordered systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyin Xi ◽  
Ronald S. Lankone ◽  
Li-Piin Sung ◽  
Yun Liu

AbstractBicontinuous porous structures through colloidal assembly realized by non-equilibrium process is crucial to various applications, including water treatment, catalysis and energy storage. However, as non-equilibrium structures are process-dependent, it is very challenging to simultaneously achieve reversibility, reproducibility, scalability, and tunability over material structures and properties. Here, a novel solvent segregation driven gel (SeedGel) is proposed and demonstrated to arrest bicontinuous structures with excellent thermal structural reversibility and reproducibility, tunable domain size, adjustable gel transition temperature, and amazing optical properties. It is achieved by trapping nanoparticles into one of the solvent domains upon the phase separation of the binary solvent. Due to the universality of the solvent driven particle phase separation, SeedGel is thus potentially a generic method for a wide range of colloidal systems.


2009 ◽  
Vol 143 ◽  
pp. 345 ◽  
Author(s):  
Aurelie M. Brizard ◽  
Marc C. A. Stuart ◽  
Jan H. van Esch

Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


Soft Matter ◽  
2021 ◽  
Author(s):  
Meng Sun ◽  
Qintang Li ◽  
Xiao Chen

Luminescent gels have been successfully fabricated through the self-assembly of sodium cholate and a europium ion in choline chloride-based deep eutectic solvents.


Sign in / Sign up

Export Citation Format

Share Document