scholarly journals Cancer cell targeting, controlled drug release and intracellular fate of biomimetic membrane-encapsulated drug-loaded nano-graphene oxide nanohybrids

2018 ◽  
Vol 6 (31) ◽  
pp. 5080-5090 ◽  
Author(s):  
Kun Ma ◽  
Duo Fu ◽  
Yajun Liu ◽  
Rui Dai ◽  
Dongli Yu ◽  
...  

FA-modified nanohybrids, NGO/DOX@SPC-FA, could deliver DOX to cancer cells and tumor tissues with improved delivery and inhibition efficacy.

Langmuir ◽  
2014 ◽  
Vol 30 (24) ◽  
pp. 7182-7189 ◽  
Author(s):  
Dinggeng He ◽  
Xiaoxiao He ◽  
Kemin Wang ◽  
Zhen Zou ◽  
Xue Yang ◽  
...  

Author(s):  
Soumitra Satapathi ◽  
Rutusmita Mishra ◽  
Manisha Chatterjee ◽  
Partha Roy ◽  
Somesh Mohapatra

Nano-materials based drug delivery modalities to specific organs and tissues has become one of the critical endeavors in pharmaceutical research. Recently, two-dimensional graphene has elicited considerable research interest because of its potential application in drug delivery systems. Here we report, the drug delivery applications of PEGylated nano-graphene oxide (nGO-PEG), complexed with a multiphoton active and anti-cancerous diarylheptanoid drug curcumin. Specifically, graphene-derivatives were used as nanovectors for the delivery of the hydrophobic anticancer drug curcumin due to its high surface area and easy surface functionalization. nGO was synthesized by modified Hummer’s method and confirmed by XRD analysis. The formation of nGO, nGO-PEG and nGO-PEG-Curcumin complex were monitored through UV-vis, IR spectroscopy. MTT assay and AO/EB staining found that nGO-PEG-Curcumin complex afforded highly potent cancer cell killing in vitro with a human breast cancer cell line MCF7.


2020 ◽  
Vol 22 (1) ◽  
pp. 154
Author(s):  
Fasih Bintang Ilhami ◽  
Kai-Chen Peng ◽  
Yi-Shiuan Chang ◽  
Yihalem Abebe Alemayehu ◽  
Hsieh-Chih Tsai ◽  
...  

Development of stimuli-responsive supramolecular micelles that enable high levels of well-controlled drug release in cancer cells remains a grand challenge. Here, we encapsulated the antitumor drug doxorubicin (DOX) and pro-photosensitizer 5-aminolevulinic acid (5-ALA) within adenine-functionalized supramolecular micelles (A-PPG), in order to achieve effective drug delivery combined with photo-chemotherapy. The resulting DOX/5-ALA-loaded micelles exhibited excellent light and pH-responsive behavior in aqueous solution and high drug-entrapment stability in serum-rich media. A short duration (1–2 min) of laser irradiation with visible light induced the dissociation of the DOX/5-ALA complexes within the micelles, which disrupted micellular stability and resulted in rapid, immediate release of the physically entrapped drug from the micelles. In addition, in vitro assays of cellular reactive oxygen species generation and cellular internalization confirmed the drug-loaded micelles exhibited significantly enhanced cellular uptake after visible light irradiation, and that the light-triggered disassembly of micellar structures rapidly increased the production of reactive oxygen species within the cells. Importantly, flow cytometric analysis demonstrated that laser irradiation of cancer cells incubated with DOX/5-ALA-loaded A-PPG micelles effectively induced apoptotic cell death via endocytosis. Thus, this newly developed supramolecular system may offer a potential route towards improving the efficacy of synergistic chemotherapeutic approaches for cancer.


RSC Advances ◽  
2021 ◽  
Vol 11 (26) ◽  
pp. 16131-16141
Author(s):  
Manali Haniti Mohd-Zahid ◽  
Siti Nadiah Zulkifli ◽  
Che Azurahanim Che Abdullah ◽  
JitKang Lim ◽  
Sharida Fakurazi ◽  
...  

5-FU-PEGylated AuNPs-CD133 is designed to improve specific targeting of 5-FU against colorectal cancer cells which abundantly express CD133.


2016 ◽  
Vol 52 (69) ◽  
pp. 10525-10528 ◽  
Author(s):  
Saemi O. Poelma ◽  
Seung Soo Oh ◽  
Sameh Helmy ◽  
Abigail S. Knight ◽  
G. Leslie Burnett ◽  
...  

We present a one-photon visible light-responsive micellar system for efficient, on-demand delivery of small molecules.


2018 ◽  
Vol 3 (2) ◽  
pp. 340-357 ◽  
Author(s):  
Sakshi Gera ◽  
Sandeep Kumar S. ◽  
Shalini N Swamy ◽  
Rahul Bhagat ◽  
Annapurna Vadaparty ◽  
...  

Abstract The association between the upregulated Notch and FSH signaling and ovarian cancer is well documented. However, their signaling has been investigated independently and only in the primary tumor tissues. The aim of this study was to investigate the interactive effects of FSH and Notch signaling on ovarian cancer proliferation, formation, and maintenance of disseminated ovarian cancer cells. The roles of Notch and FSH in ovarian cancer pathogenesis were investigated with ovarian cancer cell lines and specific antibodies against Notch and FSH receptor (FSHR). FSH upregulated Notch signaling and proliferation in ovarian cancer cells. High levels of FSH were detected in the ascites of patients with serous ovarian adenocarcinoma. Spheroids from the patients’ ascites, as well as the spheroids from ovarian cancer cell lines under low attachment culture conditions, expressed FSHβ subunit mRNA and secreted the hormone into the medium. In contrast, primary ovarian tumor tissues and cell line monolayers expressed very low levels of FSHβ. Ovarian cancer cell spheroids also exhibited higher expression of FSH receptor and Notch downstream genes than their monolayer counterparts. A combination of FSHR and Notch antagonistic antibodies significantly inhibited spheroid formation and cell proliferation in vitro. This study demonstrates that spheroids in ascites express and secrete FSH, which regulates cancer cell proliferation and spheroidogenesis through Notch signaling, suggesting that FSH is an autocrine regulator of cancer metastasis. Furthermore, Notch and FSHR are potential immunotherapeutic targets for ovarian cancer treatment.


Nanoscale ◽  
2017 ◽  
Vol 9 (44) ◽  
pp. 17318-17324 ◽  
Author(s):  
Yanhua Li ◽  
Yuanyuan Chen ◽  
Wei Pan ◽  
Zhengze Yu ◽  
Limin Yang ◽  
...  

The fabrication of well-behaved drug delivery systems that can transport drugs to specifically treat cancer cells rather than normal cells is still a tremendous challenge.


RSC Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 6919-6926
Author(s):  
Jiahui Liu ◽  
Menghuan Tang ◽  
Yanghao Zhou ◽  
Yijuan Long ◽  
Yuan Cheng ◽  
...  

ZIF-8@Sira/FA induces the cancer cells apoptosis and then eliminates cancer cells from the inside through the lysosomal death pathway.


Sign in / Sign up

Export Citation Format

Share Document