scholarly journals The effect of manganese oxidation state on antiferromagnetic order in SrMn1−xSbxO3 (0 < x < 0.5) perovskite solid solutions

2019 ◽  
Vol 7 (7) ◽  
pp. 2085-2095
Author(s):  
Gennady V. Bazuev ◽  
Alexander P. Tyutyunnik ◽  
Alexander V. Korolev ◽  
Emmanuelle Suard ◽  
Cheuk-Wai Tai ◽  
...  

Two ranges of mixed-valence manganese (Mn3+/Mn4+) SrMn1−xSbxO3 solid solution and corresponding magnetic structures were described for the first time.

Author(s):  
Ю.Ж. Тулеушев ◽  
В.Н. Володин ◽  
Е.А. Жаканбаев ◽  
Б.М. Сукуров ◽  
А.Л. Козловский

AbstractSolid solutions (alloys) with a Cd concentration of 50.3–76.3 at % were synthesized for the first time in the form of coatings by ion–plasma sputtering and codeposition of ultrafine W and Cd particles. When coatings were formed by tungsten and cadmium nanolayers, the components dissolved mutually to produce solid solutions of one metal in the other. A solid solution of cadmium in tungsten was synthesized at Cd concentrations up to 60.9 at %. At a cadmium concentration of 68.6 at % in the coating, the crystalline structure of cadmium with an admixture of amorphous tungsten was produced. At 800°C, tungsten evaporated from tungsten–cadmium coatings to form porous tungsten. The results of examination of materials fabricated on the basis of porous tungsten are planned to be used in practice.


2017 ◽  
pp. 1029-1031
Author(s):  
Vasiliy Rud ◽  
Yury Rud ◽  
Grygory Il’chuk ◽  
Volodymyr Kusnezh ◽  
Roman Petrus’

The new technology of energy barrier fabrication by thermal treatment of Cd1-xMnxTe solid solution crystal wafers was proposed. By the first time the Ox/Cd1-хMnхTe (х=0.00–0.70) heterostructures with rectifying and photosensitive properties was fabricated. The relative quantum efficiency of photoconversion of fabricated by the firs time heterostructures was investigated. The nature of the interband optical transitions and values of the band gap in Cd1-xMnxTe was determined.


Author(s):  
Tianlei Ma ◽  
Marek Nikiel ◽  
Andrew G. Thomas ◽  
Mohamed Missous ◽  
David J. Lewis

AbstractIn this report, we prepared transparent and conducting undoped and molybdenum-doped tin oxide (Mo–SnO2) thin films by aerosol-assisted chemical vapour deposition (AACVD). The relationship between the precursor concentration in the feed and in the resulting films was studied by energy-dispersive X-ray spectroscopy, suggesting that the efficiency of doping is quantitative and that this method could potentially impart exquisite control over dopant levels. All SnO2 films were in tetragonal structure as confirmed by powder X-ray diffraction measurements. X-ray photoelectron spectroscopy characterisation indicated for the first time that Mo ions were in mixed valence states of Mo(VI) and Mo(V) on the surface. Incorporation of Mo6+ resulted in the lowest resistivity of $$7.3 \times 10^{{ - 3}} \Omega \,{\text{cm}}$$ 7.3 × 10 - 3 Ω cm , compared to pure SnO2 films with resistivities of $$4.3\left( 0 \right) \times 10^{{ - 2}} \Omega \,{\text{cm}}$$ 4.3 0 × 10 - 2 Ω cm . Meanwhile, a high transmittance of 83% in the visible light range was also acquired. This work presents a comprehensive investigation into impact of Mo doping on SnO2 films synthesised by AACVD for the first time and establishes the potential for scalable deposition of SnO2:Mo thin films in TCO manufacturing. Graphical abstract


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2020 ◽  
Vol 58 (1) ◽  
pp. 71-83
Author(s):  
Elahe Mansouri Gandomani ◽  
Nematollah Rashidnejad-Omran ◽  
Amir Emamjomeh ◽  
Pietro Vignola ◽  
Tahereh Hashemzadeh

ABSTRACT Turquoise, CuAl6(PO4)4(OH)8·4H2O, belongs to the turquoise group, which consists of turquoise, chalcosiderite, aheylite, faustite, planerite, and UM1981-32-PO:FeH. In order to study turquoise-group solid solutions in samples from the Neyshabour and Meydook mines, 17 samples were selected and investigated using electron probe microanalysis. In addition, their major elements were compared in order to evaluate the feasibility of distinguishing the provenance of Persian turquoises. The electron microprobe data show that the studied samples are not constituted of pure turquoise (or any other pure endmember) and belong, from the chemical point of view, to turquoise-group solid solutions. In a turquoise–planerite–chalcosiderite–unknown mineral quaternary solid solution diagram, the chemical compositions of the analyzed samples lie along the turquoise–planerite line with minor involvement of chalcosiderite and the unknown mineral. Among light blue samples with varying hues and saturations from both studied areas, planerite is more abundant among samples from Meydook compared with samples from Neyshabour. Nevertheless, not all the light blue samples are planerite. This study demonstrates that distinguishing the deposit of origin for isochromatic blue and green turquoises, based on electron probe microanalysis method and constitutive major elements, is not possible.


2002 ◽  
Vol 45 (8) ◽  
pp. 819-846 ◽  
Author(s):  
Boris A Volkov ◽  
Ludmila I Ryabova ◽  
Dmitrii R Khokhlov

1994 ◽  
Vol 341 ◽  
Author(s):  
E. S. Hellman ◽  
E. H. Hartford

AbstractMetastable solid-solutions in the MgO-CaO system grow readily on MgO at 300°C by molecular beam epitaxy. We observe RHEED oscillations indicating a layer-by-layer growth mode; in-plane orientation can be described by the Matthews theory of island rotations. Although some films start to unmix at 500°C, others have been observed to be stable up to 900°C. The Mgl-xCaxO solid solutions grow despite a larger miscibility gap in this system than in any system for which epitaxial solid solutions have been grown. We describe attempts to use these materials as adjustable-lattice constant epitaxial building blocks


Author(s):  
Christopher H. Ingles ◽  
John A. Mavrogenes

ABSTRACT Laser ablation-inductively coupled plasma-mass spectrometry was used to traverse hydrothermal vein sphalerite from different ore-forming stages of the Porgera Au-Ag mine, Papua New Guinea. Elements were measured in situ over the growth of crystals to investigate the greatly varying concentrations of cations in sphalerite and their positions in the lattice. Traverse profiles for 16 elements were obtained and aligned to transmitted light images where possible. Each sample contained an array of elements, with many displaying orders of magnitude concentration differences. Results show the simultaneous incorporation of Cu and Sn in sphalerite, as well as Cu and Ag, In and Sn, As and Sb, Fe and Mn, and Cu and Ga. The relation [4Zn2+ ↔ 2Cu+ + Sn2+ + Sn4+] is proposed to explain the 1:1 Cu–Sn correlation. Further relations can be seen, including a Ga “ceiling” or Cu “floor”, where Ga incorporation becomes dependent on Cu concentrations. Furthermore, silver was also observed to correlate with Au, Mn, Ni, Pb, and Bi. Meta-stable solid solutions between pairs such as Cu, Ag; Fe, Mn; As, Sb; and In, Sn are also suggested. Each of these pairs are neighbors on the periodic table of elements, which suggests that simple solid solution can occur, and positive correlations for all four solid solutions were found in one sample alone. While the concept of charge-specific solid solutions in sphalerite has been discussed in the literature with reference to monovalent cations, the results presented herein also indicate solid solutions of higher oxidation states, containing many cations. Furthermore, while cations in charge-specific solid solutions have been proposed to compete for lattice sites in sphalerite, simultaneous in situ coupled concentrations at Porgera suggest otherwise. Cationic substitution equations displaying decimal ratios of each element in solid solution can then provide a novel method to distinguish between solid solution concentrations in different samples. For example, displaying 1:1 ratios of Cu–Ag and Sb–As: [2Zn2+ ↔ (Cu+0.5, Ag+0.5) + (As3+0.5, Sb3+0.5)], or for a 100:1 Fe–Mn ratio: [Zn2+ ↔ (Fe2+0.99, Mn2+0.01)].


1990 ◽  
Vol 210 ◽  
Author(s):  
R.I. Smith ◽  
A.R. West

AbstractCrystallographic results on the Li4-3x(Al,Ga)xSiO4 solid solutions are reviewed. The six sets of sites available for Li+ ions fall into two groups. The ‘framework’ sites, which also contain the substitutional Al,Ga ions, appear to have little effect on conductivity. The ‘channel’sites contain varying amounts of Li+ ions and are responsible for the dramatic variations in conductivity with x. There is evidence for the presence of one—dimensional defects, comprising columns of ordered Li+ ions, in both the framework and channel sites. The relative numbers of these linear defects has a large bearing on the solid solution mechanism in the framework sites and their occurrence in the channel sites may be responsible for the low conductivity in stoichiometric Li4SiO4.


Sign in / Sign up

Export Citation Format

Share Document