scholarly journals Gynura divaricata ameliorates hepatic insulin resistance by modulating insulin signalling, maintaining glycolipid homeostasis and reducing inflammation in type 2 diabetic mice

2019 ◽  
Vol 8 (6) ◽  
pp. 928-938 ◽  
Author(s):  
Xuan Dong ◽  
Shu-Xiang Zhao ◽  
Bing-Qing Xu ◽  
Yu-Qing Zhang

Abstract Diabetes mellitus, one of the fastest growing epidemics worldwide, has become a serious health problem in modern society. Gynura divaricata (GD), an edible medicinal plant, has been shown to have hypoglycaemic effects. The molecular mechanisms by which GD improves hepatic insulin resistance (IR) in mice with type 2 diabetes (T2D) remain largely unknown. The aerial parts of GD were prepared in a lyophilized powder, which was added into the diet of T2D mice for 4 weeks. GD could result in an obvious decrease in fasting blood glucose and insulin levels in T2D mice. Meanwhile, the underlying mechanisms involved in the insulin-signalling pathway, glucose metabolism, lipid metabolism and inflammatory reaction in the liver tissue were also investigated by western blot, which indicated that GD further ameliorated hepatic IR by activating the PI3K/p-AKT pathway, decreasing the levels of hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase and increasing the levels of glucokinase and peroxisome proliferator-activated receptor-γ in the livers of T2D mice. GD has the potential to alleviate both hyperglycaemia and hepatic IR in T2D mice. Therefore, GD might be a promising functional food or medicine for T2D treatment.

PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Francesco Negro

Insulin resistance and type 2 diabetes are associated with hepatitis C virus infection. A wealth of clinical and experimental data suggests that the virus is directly interfering with the insulin signalling in hepatocytes. In the case of at least one viral genotype (the type 3a), insulin resistance seems to be directly mediated by the downregulation of the peroxisome proliferator-activated receptorγ. Whether and how this interaction may be manipulated pharmacologically, in order to improve the responsiveness to antivirals of insulin resistant chronic hepatitis C, patients remain to be fully explored.


2005 ◽  
Vol 33 (2) ◽  
pp. 358-361 ◽  
Author(s):  
G. Jiang ◽  
B.B. Zhang

Insulin resistance is a hallmark of Type II diabetes. It is well documented that insulin sensitizers such as peroxisome-proliferator-activated receptor γ agonists and aspirin improve insulin action in vivo. The detailed mechanisms by which the insulin sensitizers promote insulin signalling, however, are not completely understood and remain somewhat controversial. In the present review, we summarize our studies attempting to explore the molecular mechanisms underlying the effects of insulin sensitizers in cells and in animal models of insulin resistance. In 3T3-L1 adipocytes and/or in HEK-293 cells stably expressing recombinant IRS1 protein (insulin receptor substrate protein 1), the peroxisome-proliferator-activated receptor γ agonist rosiglitazone and aspirin promote insulin signalling by decreasing inhibitory IRS1 serine phosphorylation. Increased IRS1 Ser-307 phosphorylation and concomitant decreased insulin signalling as measured by insulin-stimulated IRS1 tyrosine phosphorylation and Akt threonine phosphorylation were observed in adipose tissues of Zucker obese rats compared with lean control rats. Treatment with rosiglitazone for 24 and 48 h increased insulin signalling and decreased IRS1 Ser-307 phosphorylation concomitantly. Treatment of the Zucker obese rats with rosiglitazone for 24 h also reversed the high circulating levels of free fatty acids, which have been shown to correlate with increased IRS1 serine phosphorylation. Taken together, the results suggest that IRS1 inhibitory serine phosphorylation is a key component of insulin resistance and its reversal may be physiologically relevant to insulin sensitization in vivo.


2018 ◽  
Vol 239 (3) ◽  
pp. 289-301 ◽  
Author(s):  
Rita Sharma ◽  
Quyen Luong ◽  
Vishva M Sharma ◽  
Mitchell Harberson ◽  
Brian Harper ◽  
...  

Growth hormone (GH) has long been known to stimulate lipolysis and insulin resistance; however, the molecular mechanisms underlying these effects are unknown. In the present study, we demonstrate that GH acutely induces lipolysis in cultured adipocytes. This effect is secondary to the reduced expression of a negative regulator of lipolysis, fat-specific protein 27 (FSP27; aka Cidec) at both the mRNA and protein levels. These effects are mimicked in vivo as transgenic overexpression of GH leads to a reduction of FSP27 expression. Mechanistically, we show GH modulation of FSP27 expression is mediated through activation of both MEK/ERK- and STAT5-dependent intracellular signaling. These two molecular pathways interact to differentially manipulate peroxisome proliferator-activated receptor gamma activity (PPARγ) on the FSP27 promoter. Furthermore, overexpression of FSP27 is sufficient to fully suppress GH-induced lipolysis and insulin resistance in cultured adipocytes. Taken together, these data decipher a molecular mechanism by which GH acutely regulates lipolysis and insulin resistance in adipocytes.


Author(s):  
Yoshiro Saito

Abstract Selenoprotein P (SeP; encoded by SELENOP) is selenium (Se)-rich plasma protein that is mainly produced in the liver. SeP functions as a Se-transport protein to deliver Se from the liver to other tissues, such as the brain and testis. The protein plays a pivotal role in Se metabolism and antioxidative defense, and it has been identified as a ‘hepatokine’ that causes insulin resistance in type 2 diabetes. SeP levels are increased in type 2 diabetes patients, and excess SeP impairs insulin signalling, promoting insulin resistance. Furthermore, increased levels of SeP disturb the functioning of pancreatic β cells and inhibit insulin secretion. This review focuses on the biological function of SeP and the molecular mechanisms associated with the adverse effects of excess SeP on pancreatic β cells’ function, particularly with respect to redox reactions. Interactions between the liver and pancreas are also discussed.


2006 ◽  
Vol 92 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Arya M. Sharma ◽  
Bart Staels

Abstract Context: Adipose tissue is a metabolically dynamic organ, serving as a buffer to control fatty acid flux and a regulator of endocrine function. In obese subjects, and those with type 2 diabetes or the metabolic syndrome, adipose tissue function is altered (i.e. adipocytes display morphological differences alongside aberrant endocrine and metabolic function and low-grade inflammation). Evidence Acquisition: Articles on the role of peroxisome proliferator-activated receptor γ (PPARγ) in adipose tissue of healthy individuals and those with obesity, metabolic syndrome, or type 2 diabetes were sourced using MEDLINE (1990–2006). Evidence Synthesis: Articles were assessed to provide a comprehensive overview of how PPARγ-activating ligands improve adipose tissue function, and how this links to improvements in insulin resistance and the progression to type 2 diabetes and atherosclerosis. Conclusions: PPARγ is highly expressed in adipose tissue, where its activation with thiazolidinediones alters fat topography and adipocyte phenotype and up-regulates genes involved in fatty acid metabolism and triglyceride storage. Furthermore, PPARγ activation is associated with potentially beneficial effects on the expression and secretion of a range of factors, including adiponectin, resistin, IL-6, TNFα, plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and angiotensinogen, as well as a reduction in plasma nonesterified fatty acid supply. The effects of PPARγ also extend to macrophages, where they suppress production of inflammatory mediators. As such, PPARγ activation appears to have a beneficial effect on the relationship between the macrophage and adipocyte that is distorted in obesity. Thus, PPARγ-activating ligands improve adipose tissue function and may have a role in preventing progression of insulin resistance to diabetes and endothelial dysfunction to atherosclerosis.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5503
Author(s):  
Seong-min Kim ◽  
Jee-Young Imm

Although a variety of beneficial health effects of natural flavonoids, including chrysin, has been suggested, poor solubility and bioavailability limit their practical use. As a promising delivery system, chrysin-loaded phytosomes (CPs) were prepared using egg phospholipid (EPL) at a 1:3 molar ratio and its antidiabetic effects were assessed in db/db diabetic mice. Male C57BLKS/J-db/db mice were fed a normal diet (control), chrysin diet (100 mg chrysin/kg), CP diet (100 mg chrysin equivalent/kg), metformin diet (200 mg/kg) or EPL diet (vehicle, the same amount of EPL used for CP preparation) for 9 weeks. Administration of CP significantly decreased fasting blood glucose and insulin levels in db/db mice compared with the control. An oral glucose tolerance test and homeostatic model assessment for insulin resistance were significantly improved in the CP group (p < 0.05). CP treatment suppressed gluconeogenesis via downregulation of phosphoenolpyruvate carboxykinase while it promoted glucose uptake in the skeletal muscle and liver of db/db mice (p < 0.05). The CP-mediated improved glucose utilization in the muscle was confirmed by upregulation of glucose transporter type 4, hexokinase2 and peroxisome proliferator-activated receptor γ during treatment (p < 0.05). The CP-induced promotion of GLUT4 plasma translocation was confirmed in the skeletal muscle of db/db mice (p < 0.05). Based on the results, CP showed greater antidiabetic performance compared to the control by ameliorating insulin resistance in db/db mice and phytosome can be used as an effective antidiabetic agent.


2006 ◽  
Vol 291 (3) ◽  
pp. E536-E543 ◽  
Author(s):  
Chaodong Wu ◽  
Salmaan A. Khan ◽  
Li-Jen Peng ◽  
Honggui Li ◽  
Steven G. Carmella ◽  
...  

Hepatic insulin resistance is one of the characteristics of type 2 diabetes and contributes to the development of hyperglycemia. How changes in hepatic glucose flux lead to insulin resistance is not clearly defined. We determined the effects of decreasing the levels of hepatic fructose 2,6-bisphosphate (F26P2), a key regulator of glucose metabolism, on hepatic glucose flux in the normal 129J mice. Upon adenoviral overexpression of a kinase activity-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme that determines F26P2 level, hepatic F26P2 levels were decreased twofold compared with those of control virus-treated mice in basal state. In addition, under hyperinsulinemic conditions, hepatic F26P2 levels were much lower than those of the control. The decrease in F26P2 leads to the elevation of basal and insulin-suppressed hepatic glucose production. Also, the efficiency of insulin to suppress hepatic glucose production was decreased (63.3 vs. 95.5% suppression of the control). At the molecular level, a decrease in insulin-stimulated Akt phosphorylation was consistent with hepatic insulin resistance. In the low hepatic F26P2 states, increases in both gluconeogenesis and glycogenolysis in the liver are responsible for elevations of hepatic glucose production and thereby contribute to the development of hyperglycemia. Additionally, the increased hepatic gluconeogenesis was associated with the elevated mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1α and phospho enolpyruvate carboxykinase. This study provides the first in vivo demonstration showing that decreasing hepatic F26P2 levels leads to increased gluconeogenesis in the liver. Taken together, the present study demonstrates that perturbation of glucose flux in the liver plays a predominant role in the development of a diabetic phenotype, as characterized by hepatic insulin resistance.


2017 ◽  
Vol 41 (6) ◽  
pp. 2419-2431 ◽  
Author(s):  
Lin Dou ◽  
Shuyue Wang ◽  
Libo Sun ◽  
Xiuqing Huang ◽  
Yang Zhang ◽  
...  

Objective: Insulin resistance is a critical factor contributing to the pathogenesis of type 2 diabetes and other metabolic diseases. Recent studies have indicated that miR-338-3p plays an important role in cancer. Here, we investigated whether miR-338-3p mediates tumour necrosis factor-α (TNF-α)-induced hepatic insulin resistance. Methods: The activation of the insulin signalling pathway and the level of glycogenesis were examined in the livers of the db/db and high fat diet (HFD)-fed mice and in HEP1-6 cells transfected with miR-338-3p mimic or inhibitor. Computational prediction of microRNA target, luciferase assay and Western blot were used to assess the miR-338-3p target. Chromatin immunoprecipitation (ChIP) assay was used to determine the transcriptional regulator of miR-338-3p. Results: miR-338-3p was down-regulated in the livers of the db/db, HFD-fed and TNF-α-treated C57BL/6J mice, as well as in mouse HEP1-6 hepatocytes treated with TNF-α. Importantly the down-regulation of miR-338-3p induced insulin resistance, as indicated by impaired glucose tolerance and insulin tolerance. Further research showed that the down-regulated miR-338-3p resulted in the impaired AKT/ glycogen synthase kinase 3 beta (GSl·Gβ) signalling pathway and glycogen synthesis. In contrast, hepatic over-expression of miR-338-3p rescued the TNF-α-induced insulin resistance. Moreover, protein phosphatase 4 regulator subunit 1 (PP4R1) was identified as a direct target of miR-338-3p that mediated hepatic insulin signalling by regulating protein phosphatase 4 (PP4). Finally we identified hepatic nuclear factor 4 alpha (HNF-4α) as the transcriptional regulator of miRNA-338-3p. Conclusions: Our studies provide novel insight into the critical role and molecular mechanism by which miR-338-3p is involved in TNF-α-induced hepatic insulin resistance. miR-338-3p might mediate TNF-α-induced hepatic insulin resistance by targeting PP4R1 to regulate PP4 expression.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Fengxia Liang ◽  
Rui Chen ◽  
Atsushi Nakagawa ◽  
Makoto Nishizawa ◽  
Shinichi Tsuda ◽  
...  

Electroacupuncture (EA) has been observed to reduce insulin resistance in obesity and diabetes. However, the biochemical mechanism underlying this effect remains unclear. This study investigated the effects of low-frequency EA on metabolic action in genetically obese and type 2 diabetic db/db mice. Nine-week-old db/m and db/db mice were randomly divided into four groups, namely, db/m, db/m + EA, db/db, and db/db + EA. db/m + EA and db/db + EA mice received 3-Hz electroacupuncture five times weekly for eight consecutive weeks. In db/db mice, EA tempered the increase in fasting blood glucose, food intake, and body mass and maintained insulin levels. In EA-treated db/db mice, improved insulin sensitivity was established through intraperitoneal insulin tolerance test. EA was likewise observed to decrease free fatty acid levels in db/db mice; it increased protein expression in skeletal muscle Sirtuin 1 (SIRT1) and induced gene expression of peroxisome proliferator-activated receptor coactivator (PGC-), nuclear respiratory factor 1 (NRF1), and acyl-CoA oxidase (ACOX). These results indicated that EA offers a beneficial effect on insulin resistance in obese and diabetic db/db mice, at least partly, via stimulation of SIRT1/PGC-, thus resulting in improved insulin signal.


Sign in / Sign up

Export Citation Format

Share Document