Circulating miR-27a-3p as a candidate for a biomarker of whole grain diets for lipid metabolism

2020 ◽  
Vol 11 (10) ◽  
pp. 8852-8865
Author(s):  
Jinxin Liu ◽  
Yan Li ◽  
Lamei Xue ◽  
Mingcong Fan ◽  
Chenzhipeng Nie ◽  
...  

Circulating miR-27a-3p was involved in the process of lipid synthesis under the dietary patterns of whole grain diets, and the expression of miR-27a-3p was decreased in serum, while it was elevated both in liver and ileum.

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1740
Author(s):  
Yuning Pang ◽  
Xiang Xu ◽  
Xiaojun Xiang ◽  
Yongnan Li ◽  
Zengqi Zhao ◽  
...  

A high-fat diet often leads to excessive fat deposition and adversely affects the organism. However, the mechanism of liver fat deposition induced by high fat is still unclear. Therefore, this study aimed at acetyl-CoA carboxylase (ACC) to explore the mechanism of excessive liver deposition induced by high fat. In the present study, the ORF of ACC1 and ACC2 were cloned and characterized. Meanwhile, the mRNA and protein of ACC1 and ACC2 were increased in liver fed with a high-fat diet (HFD) or in hepatocytes incubated with oleic acid (OA). The phosphorylation of ACC was also decreased in hepatocytes incubated with OA. Moreover, AICAR dramatically improved the phosphorylation of ACC, and OA significantly inhibited the phosphorylation of the AMPK/ACC pathway. Further experiments showed that OA increased global O-GlcNAcylation and agonist of O-GlcNAcylation significantly inhibited the phosphorylation of AMPK and ACC. Importantly, the disorder of lipid metabolism caused by HFD or OA could be rescued by treating CP-640186, the dual inhibitor of ACC1 and ACC2. These observations suggested that high fat may activate O-GlcNAcylation and affect the AMPK/ACC pathway to regulate lipid synthesis, and also emphasized the importance of the role of ACC in lipid homeostasis.


1998 ◽  
Vol 275 (2) ◽  
pp. E300-E309 ◽  
Author(s):  
Sandra J. Peters ◽  
David J. Dyck ◽  
Arend Bonen ◽  
Lawrence L. Spriet

The effects of physiological (0, 0.1, 2.5, and 10 nM) and pharmacological (200 nM) epinephrine concentrations on resting skeletal muscle lipid metabolism were investigated with the use of incubated rat epitrochlearis (EPT), flexor digitorum brevis (FDB), and soleus (SOL) muscles. Muscles were chosen to reflect a range of oxidative capacities: SOL > EPT > FDB. The muscles were pulsed with [1-14C]palmitate and chased with [9,10-3H]palmitate. Incorporation and loss of the labeled palmitate from the triacylglycerol pool (as well as mono- and diacylglycerol, phospholipid, and fatty acid pools) permitted the simultaneous estimation of lipid hydrolysis and synthesis. Endogenous and exogenous fat oxidation was quantified by14CO2and3H2O production, respectively. Triacylglycerol breakdown was elevated above control at all epinephrine concentrations in the oxidative SOL muscle, at 2.5 and 200 nM (at 10 nM, P= 0.066) in the FDB, and only at 200 nM epinephrine in the EPT. Epinephrine stimulated glycogen breakdown in the EPT at all concentrations but only at 10 and 200 nM in the FDB and had no effect in the SOL. We further characterized muscle lipid hydrolysis potential and measured total hormone-sensitive lipase content by Western blotting (SOL > FDB > EPT). This study demonstrated that physiological levels of epinephrine cause measurable increases in triacylglycerol hydrolysis at rest in oxidative but not in glycolytic muscle, with no change in the rate of lipid synthesis or oxidation. Furthermore, epinephrine caused differential stimulation of carbohydrate and fat metabolism in glycolytic vs. oxidative muscle. Epinephrine preferentially stimulated glycogen breakdown over triacylglycerol hydrolysis in the glycolytic EPT muscle. Conversely, in the oxidative SOL muscle, epinephrine caused an increase in endogenous lipid hydrolysis over glycogen breakdown.


2018 ◽  
Vol 314 (1) ◽  
pp. C43-C52 ◽  
Author(s):  
Meiqiang Chu ◽  
Yong Zhao ◽  
Shuai Yu ◽  
Yanan Hao ◽  
Pengfei Zhang ◽  
...  

Mammary epithelial cells are regulated by steroid hormones, growth factors, and even microRNAs. miR-15b has been found to regulate lipid metabolism in adipocytes; however, its effects on lipid metabolism in mammary epithelial cells, the cells of lipid synthesis and secretion, are as yet unknown. The main purpose of this investigation was to explore the effect of miR-15b on lipid metabolism in mammary epithelial cells, along with the underlying mechanisms. miR-15b was overexpressed or inhibited by miRNA mimics or inhibitors; subsequently, lipid formation in mammary epithelial cells, and proteins related to lipid metabolism, were investigated. Through overexpression or inhibition of miR-15b expression, the current investigation found that miR-15b downregulates lipid metabolism in mammary epithelial cells and is expressed differentially at various stages of mouse and goat mammary gland development. Inhibition of miR-15b expression increased lipid content in mammary epithelial cells through elevation of the lipid synthesis enzyme fatty acid synthetase (FASN), and overexpression of miR-15b reduced lipid content in mammary epithelial cells with decreasing levels of FASN. Moreover, the steroid hormones estradiol and progesterone decreased miR-15b expression with a subsequent increase in lipid formation in mammary epithelial cells. The expression of miR-15b was lower during lactation and negatively correlated with lipid synthesis proteins, which suggests that it may be involved in lipid synthesis and milk production. miR-15b might be a useful target for altering lipid production and milk yield.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1226
Author(s):  
Yujia Jing ◽  
Yifei Chen ◽  
Shan Wang ◽  
Jialiang Ouyang ◽  
Liangyu Hu ◽  
...  

PER2, a circadian clock gene, is associated with mammary gland development and lipid synthesis in rodents, partly via regulating peroxisome proliferator-activated receptor gamma (PPARG). Whether such a type of molecular link existed in bovines was unclear. We hypothesized that PER2 was associated with lipid metabolism and regulated cell cycles and apoptosis in bovine mammary epithelial cells (BMECs). To test this hypothesis, BMECs isolated from three mid-lactation (average 110 d postpartum) cows were used. The transient transfection of small interfering RNA (siRNA) was used to inhibit PER2 transcription in primary BMECs. The silencing of PER2 led to lower concentrations of cellular lipid droplets and triacylglycerol along with the downregulation of lipogenic-related genes such as ACACA, FASN, LPIN1, and SCD, suggesting an overall inhibition of lipogenesis and desaturation. The downregulation of PPARG and SREBF1 in response to PER2 silencing underscored the importance of circadian clock signaling and the transcriptional regulation of lipogenesis. Although the proliferation of BMECs was not influenced by PER2 silencing, the number of cells in the G2/GM phase was upregulated. PER2 silencing did not affect cell apoptosis. Overall, the data provided evidence that PER2 participated in the coordination of mammary lipid metabolism and was potentially a component of the control of lipid droplets and TAG synthesis in ruminant mammary cells. The present data suggested that such an effect could occur through direct effects on transcriptional regulators.


2018 ◽  
Vol 18 (6) ◽  
pp. 484-493 ◽  
Author(s):  
Xiang Cheng ◽  
Jianying Li ◽  
Deliang Guo

Lipid metabolism reprogramming emerges as a new hallmark of malignancies. Sterol regulatory element-binding proteins (SREBPs), which are central players in lipid metabolism, are endoplasmic reticulum (ER)-bound transcription factors that control the expression of genes important for lipid synthesis and uptake. Their transcriptional activation requires binding to SREBP cleavageactivating protein (SCAP) to translocate their inactive precursors from the ER to the Golgi to undergo cleavage and subsequent nucleus translocation of their NH2-terminal forms. Recent studies have revealed that SREBPs are markedly upregulated in human cancers, providing the mechanistic link between lipid metabolism alterations and malignancies. Pharmacological or genetic inhibition of SCAP or SREBPs significantly suppresses tumor growth in various cancer models, demonstrating that SCAP/SREBPs could serve as promising metabolic targets for cancer therapy. In this review, we will summarize recent progress in our understanding of the underlying molecular mechanisms regulating SCAP/SREBPs and lipid metabolism in malignancies, discuss new findings about SREBP trafficking, which requires SCAP N-glycosylation, and introduce a newly identified microRNA-29-mediated negative feedback regulation of the SCAP/SREBP pathway. Moreover, we will review recently developed inhibitors targeting the SCAP/SREBP pathway for cancer treatment.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3147
Author(s):  
Laurence Pellerin ◽  
Lorry Carrié ◽  
Carine Dufau ◽  
Laurence Nieto ◽  
Bruno Ségui ◽  
...  

Metabolic reprogramming contributes to the pathogenesis and heterogeneity of melanoma. It is driven both by oncogenic events and the constraints imposed by a nutrient- and oxygen-scarce microenvironment. Among the most prominent metabolic reprogramming features is an increased rate of lipid synthesis. Lipids serve as a source of energy and form the structural foundation of all membranes, but have also emerged as mediators that not only impact classical oncogenic signaling pathways, but also contribute to melanoma progression. Various alterations in fatty acid metabolism have been reported and can contribute to melanoma cell aggressiveness. Elevated expression of the key lipogenic fatty acid synthase is associated with tumor cell invasion and poor prognosis. Fatty acid uptake from the surrounding microenvironment, fatty acid β-oxidation and storage also appear to play an essential role in tumor cell migration. The aim of this review is (i) to focus on the major alterations affecting lipid storage organelles and lipid metabolism. A particular attention has been paid to glycerophospholipids, sphingolipids, sterols and eicosanoids, (ii) to discuss how these metabolic dysregulations contribute to the phenotype plasticity of melanoma cells and/or melanoma aggressiveness, and (iii) to highlight therapeutic approaches targeting lipid metabolism that could be applicable for melanoma treatment.


2020 ◽  
Vol 40 ◽  
pp. 449
Author(s):  
M. Kafyra ◽  
M.S. Kontoe ◽  
C. Masson ◽  
J.-L. Granet ◽  
S. Siest ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e22646 ◽  
Author(s):  
Maria Lankinen ◽  
Ursula Schwab ◽  
Marjukka Kolehmainen ◽  
Jussi Paananen ◽  
Kaisa Poutanen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document