Regulation of wheat germ polysaccharides in the immune response of mice from newborn to adulthood associated with intestinal microbiota

2020 ◽  
Vol 11 (11) ◽  
pp. 9662-9674
Author(s):  
Liyuan Yun ◽  
Wen Li ◽  
Yanan Liu ◽  
Tao Wu ◽  
Min Zhang

The aim of this study was to determine the effects of wheat germ polysaccharides (WGPs), which are indigestible carbohydrate fibers, on mice in early life, and the changes leading to long-lasting consequences.

Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 662
Author(s):  
Sabrin Abdelrahman Morshedy ◽  
Ahmed M. Abdelmodather ◽  
Mohamed M. Basyony ◽  
Soliman A. Zahran ◽  
Mohamed A. Hassan

Vegetable oils are a source of natural antioxidants, including tocopherols, sterols, phenolic compounds, coenzymes, and polyunsaturated fatty acids that provide nutritional value, organoleptic properties, and significantly delay or prevent lipid oxidation. Eighty-four V-line rabbits at 5 weeks of age with an initial body weight (BW) of 535.60 ± 13.48 g were assigned randomly to four experimental groups (seven replicates in each group with three rabbits each). The first group served as a control and received 0.3 mL/kg BW of distilled water (CON), while the second and third groups received 0.3 mL/kg BW of rocket seed oil (RSO) and wheat germ oil (WGO), respectively. The fourth group received a mixture of oils consisting of 0.15 mL of RSO and 0.15 mL of WGO/kg BW (MOs). The experiment lasted 7 weeks. The study investigated the effects of RSO, WGO, and their mixture on growth performance, feed utilization, antioxidant status, and immune response of growing rabbits. The results indicated that the rabbits that were administered orally with RSO and WGO or their mixture had higher (p ≤ 0.05) final BW, weight gain, and average daily gain when compared to the control group. In addition, the feed conversion ratio improved significantly with RSO, WGO, and MOs treatments. Different oil treatments improved nutrient digestibility, nutritive value, and nitrogen balance. Moreover, the rabbits that received RSO, WGO, and their mixture had an improvement the meat fatty acid composition compared to the control rabbits. Oral administration of RSO, WGO, and their mixture significantly improved serum protein fractions, decreased blood urea nitrogen, and had a positive effect on serum total lipids, HDL-c, and LDL-c. Furthermore, the treatments of RSO, WGO, and MOs had a significant improvement in the antioxidative status and immune response.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Z. H. Miao ◽  
W. X. Zhou ◽  
R. Y. Cheng ◽  
H. J. Liang ◽  
F. L. Jiang ◽  
...  

Abstract Background Accumulating evidence have shown that the intestinal microbiota plays an important role in prevention of host obesity and metabolism disorders. Recent studies also demonstrate that early life is the key time for the colonization of intestinal microbes in host. However, there are few studies focusing on possible association between intestinal microbiota in the early life and metabolism in adulthood. Therefore the present study was conducted to examine whether the short term antibiotic and/or probiotic exposure in early life could affect intestinal microbes and their possible long term effects on host metabolism. Results A high-fat diet resulted in glucose and lipid metabolism disorders with higher levels of visceral fat rate, insulin-resistance indices, and leptin. Exposure to ceftriaxone in early life aggravated the negative influences of a high-fat diet on mouse physiology. Orally fed TMC3115 protected mice, especially those who had received treatment throughout the whole study, from damage due to a high-fat diet, such as increases in levels of fasting blood glucose and serum levels of insulin, leptin, and IR indices. Exposure to ceftriaxone during the first 2 weeks of life was linked to dysbiosis of the fecal microbiota with a significant decrease in the species richness and diversity. However, the influence of orally fed ceftriaxone on the fecal microbiota was limited to 12 weeks after the termination of treatment. Of note, at week 12 there were still some differences in the composition of intestinal microbiota between mice provided with high fat diet and antibiotic exposure and those only fed a high fat diet. Conclusions These results indicated that exposure to antibiotics, such as ceftriaxone, in early life may aggravate the negative influences of a high-fat diet on the physiology of the host animal. These results also suggest that the crosstalk between the host and their intestinal microbiota in early life may be more important than that in adulthood, even though the same intestinal microbes are present in adulthood.


2017 ◽  
Vol 8 (5) ◽  
pp. 681-695 ◽  
Author(s):  
J.S.Y. Low ◽  
S.-E. Soh ◽  
Y.K. Lee ◽  
K.Y.C. Kwek ◽  
J.D. Holbrook ◽  
...  

Several studies have reported that intestinal microbial colonisation patterns differ between non-allergic and allergic infants. However, the microbial signature underlying the pathogenesis of allergies remains unclear. We aim to gain insight into the development of the intestinal microbiota of healthy infants and infants who develop allergy in early life, and identify potential microbiota biomarkers of later allergic disease. Using a case-control design in a Chinese sub-cohort of a Singaporean birth cohort (GUSTO), we utilised 16S rRNA gene sequencing to assess intestinal microbial composition and diversity of 21 allergic and 18 healthy infants at 3 weeks, 3 months and 6 months of age, and correlated the microbiota with allergy at ages 18 and 36 months. Pronounced differences in intestinal microbiota composition between allergic and healthy infants were observed at 3 months of age. The intestine of healthy infants was colonised with higher abundance of commensal Bifidobacterium. Conversely, Klebsiella, an opportunistic pathogen, was significantly enriched in the allergic infants. Interestingly, infants with a high Klebsiella/Bifidobacterium (K/B) ratio (above the population median K/B ratio) at age 3 months had an odds ratio of developing allergy by 3 years of age of 9.00 (95% confidence interval 1.46-55.50) compared to those with low K/B ratio. This study demonstrated a relationship between the ratio of genera Klebsiella and Bifidobacterium during early infancy and development of paediatric allergy in childhood. Our study postulates that an elevated K/B ratio in early infancy could be a potential indicator of an increased risk of allergy development. This line of research might enable future intervention strategies in early life to prevent or treat allergy. Our study provides new insights into microbial signatures associated with childhood allergy, in particular, suggests that an elevated K/B ratio could be a potential early-life microbiota biomarker of allergic disease.


2019 ◽  
Vol 16 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Svetlana G. Makarova ◽  
Leyla S. Namazova-Baranova ◽  
Oksana A. Ereshko ◽  
Dmitry S. Yasakov ◽  
Pavel E. Sadchikov

Intestinal microbiota is the factor that identifies considerably the human health. The impact of the microbial factor on a child begins long before his birth. Children have certain features in forming of immune response and intestinal microbiocenosis even before birth. Decline in diversity of intestinal microbiota is common in children with allergic disease even during first months of life, before allergic pathology development. Capabilities for microbiota development adjustment are sufficiently restricted. However it is clinically proven that early (within the first hours of life) breastfeeding attachment, breastfeeding itself within at least first 6 months of life, the use of prebiotics in milk formulas as well as the use of probiotics can give positive results on allergy management. In this review we present results of recent metaanalyses and consensus papers of international medical communities about use of probiotics and prebiotics in prevention and treatment of allergic diseases. Despite great scientific and practical interest to this topic, authors of metaanalyses bring our attention to the lack of evidence-based clinical trials.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 181-181
Author(s):  
Martin Lessard ◽  
Mylène Blais ◽  
Guylaine Talbot ◽  
J Jacques Matte ◽  
Ann Letellier ◽  
...  

Abstract Lactation, feeding conditions, microbial interventions and piglet growth in the first few weeks of life have important impact on the intestinal microbiota establishment and immune system development of piglets. Indeed, colostrum and milk contain various bioactive components such as immune factors, antimicrobial peptides and oligosaccharides that contribute to maintain intestinal homeostasis and regulate interactions between microbiota and host immune system. Recent results revealed that low birth weight piglet (LBWP) with poor weight gain during the first two weeks of life develop different intestinal microbiota and immune response profiles compared to high BWP (HBWP) littermates. Consequently, piglets within litters may have different resilience to infections after weaning and benefit from feed additives in a specific manner. A study has been performed to evaluate the potential of bovine colostrum extract (BC) as replacement to plasma proteins for improving gut health and resilience to Salmonella infection in piglets. Results revealed that in weaned piglets fed BC, intestinal microbiota was differently modulated and bacterial dysbiosis induced by Salmonella was restored faster. Moreover, expression of genes involved in innate immunity such as β-defensin-2 and glutathione peroxidase-2 was respectively down- and up-regulated in BC fed piglets. A combination of dietary supplementation with BC, cupper and vitamins A and D has also been tested in LBWP and HBWP, and there is clear evidence that BC in combination with other feed additives promote growth and gut health in both LBWP and HBWP. The porcine intestinal epithelial cell line IPEC-J2 was used to better understand the functional properties of BC. Results indicated that BC improves wound healing, enhances barrier function and modulates the expression of several genes involved in innate immune response. Finally, as microbial intervention, the potential of fecal transplantation to modulate intestinal microbiota and immune system development of piglets is under investigation and will be discussed.


2018 ◽  
Vol 33 (6) ◽  
pp. 1036-1043 ◽  
Author(s):  
Monica Ficara ◽  
Elisa Pietrella ◽  
Caterina Spada ◽  
Elisa Della Casa Muttini ◽  
Laura Lucaccioni ◽  
...  

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Carmen De Miguel ◽  
Dao H Ho ◽  
Analia S Loria ◽  
Ijeoma Obi ◽  
Jennifer S Pollock

We previously reported that maternal separation (MatSep), an animal model of early life stress, sensitizes rats to pro-hypertensive stimuli in adulthood. We hypothesized that MatSep induces a renal pro-inflammatory immune response. Immune cell populations and expression of cytokines were assessed by magnetic bead isolation, FACS analysis, ELISA and RT-PCR in adult male MatSep and normally-reared littermate control rats. Circulating and renal mononuclear or T cell numbers were similar between control and MatSep rats (n=4-11/group, p>0.05). Both groups presented similar percentages of circulating macrophages and T H , T C , and T reg cells (n=4, p>0.05). However, the percentage of circulating B cells was significantly decreased in MatSep rats (23.7±1.2% vs. 20.1±0.7%; n=4, p<0.05). Pro-inflammatory cytokine IL-1Beta was significantly elevated in kidneys from MatSep rats (4.4±0.5 vs. 7.9±1.0 pg/mg prot; n=7-8/group; p<0.05). However, IFN-gamma, IL-6, and IL-4 were not different between control and MatSep rats. To further assess the immune system in MatSep and control rats, we acutely challenged adult rats with lipopolysaccharide (LPS; 2 mg/kg; i.v., 14 h). LPS significantly elevated renal expression of pro-inflammatory chemokine receptors (CCR3, CCR4, CXCR4), cytokines (IFN-gamma, CCL3, CCL4, IL-16), and activation markers (CD40, CD40lg) in MatSep rats (4 to 6 fold increase; n=5/group, p<0.05), suggesting that MatSep induces an exaggerated pro-inflammatory renal immune response to LPS. In conclusion, early life stress induces a renal pro-inflammatory status in adulthood that leads to sensitization to further immune challenges. Funded by P01 HL 69999 to JSP, NIH T32 DK007545 to CDM, F32 HL 116145 to DHH and K99/R00 HL 111354 to ASL.


Sign in / Sign up

Export Citation Format

Share Document