Compressible and Flexible PPy@MoS2/C Microwave Absorption Foam with Strong Dielectric Polarization from 2D Semiconductor Intermediated Sandwich Structure

Nanoscale ◽  
2021 ◽  
Author(s):  
Ziqi Yang ◽  
Huiqiao Guo ◽  
Wenbin You ◽  
Zhengchen Wu ◽  
Liting Yang ◽  
...  

Structural engineering represents a major trend in two-dimensional (2D) material fields on microscopic interfacial electric/dielectric property and macroscopic device strategy. 2D Molybdenum disulfide (MoS2) with semiconductive feature and lamellar architecture...

RSC Advances ◽  
2016 ◽  
Vol 6 (62) ◽  
pp. 57497-57501 ◽  
Author(s):  
Shen Lai ◽  
Jaeho Jeon ◽  
Young-Jae Song ◽  
Sungjoo Lee

The transfer of two-dimensional (2D) material layers to arbitrary substrates from growth substrates is critical for many applications.


2018 ◽  
Vol 47 (16) ◽  
pp. 6101-6127 ◽  
Author(s):  
Hongmei Wang ◽  
Chunhe Li ◽  
Pengfei Fang ◽  
Zulei Zhang ◽  
Jin Zhong Zhang

As a two-dimensional (2D) material, molybdenum disulfide (MoS2) exhibits unique electronic and optical properties useful for a variety of optoelectronic applications including light harvesting.


2019 ◽  
Vol 21 (14) ◽  
pp. 7454-7461 ◽  
Author(s):  
Haosheng Pang ◽  
Peng Huang ◽  
Weirong Zhuo ◽  
Minglin Li ◽  
Chenghui Gao ◽  
...  

The hysteresis phenomenon frequently arises in two-dimensional (2D) material nanoindentation, which is generally expected to be excluded from characterizing the elastic properties due to the imperfect elastic behaviour.


Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8654-8663
Author(s):  
Fatima Zahra Ramadan ◽  
Flaviano José dos Santos ◽  
Lalla Btissam Drissi ◽  
Samir Lounis

Based on density functional theory combined with low-energy models, we explore the magnetic properties of a hybrid atomic-thick two-dimensional (2D) material made of germanene doped with fluorine atoms in a half-fluorinated configuration (Ge2F).


Nanoscale ◽  
2021 ◽  
Author(s):  
Haihua Hu ◽  
Yun Zheng ◽  
Kun Ren ◽  
Jieying Wang ◽  
Yanhui Zhang ◽  
...  

Constructing carbon nanotubes (CNTs) based on heterostructures have been proved to be an effective way to improve microwave absorption (MA) capability of the materials, regardless of the inner wall or...


2021 ◽  
Author(s):  
XINGYUN Li ◽  
Bin Han ◽  
Yaojie Xu ◽  
Xiao Liu ◽  
Chunhui Zhao ◽  
...  

As an advanced two-dimensional (2D) material with unique properties, black phosphorus (BP) has attracted great attention in a variety of fields. One of the main obstacles for practical application of...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yongpeng Zhao ◽  
Xueqing Zuo ◽  
Yuan Guo ◽  
Hui Huang ◽  
Hao Zhang ◽  
...  

AbstractRecently, multilevel structural carbon aerogels are deemed as attractive candidates for microwave absorbing materials. Nevertheless, excessive stack and agglomeration for low-dimension carbon nanomaterials inducing impedance mismatch are significant challenges. Herein, the delicate “3D helix–2D sheet–1D fiber–0D dot” hierarchical aerogels have been successfully synthesized, for the first time, by sequential processes of hydrothermal self-assembly and in-situ chemical vapor deposition method. Particularly, the graphene sheets are uniformly intercalated by 3D helical carbon nanocoils, which give a feasible solution to the mentioned problem and endows the as-obtained aerogel with abundant porous structures and better dielectric properties. Moreover, by adjusting the content of 0D core–shell structured particles and the parameters for growth of the 1D carbon nanofibers, tunable electromagnetic properties and excellent impedance matching are achieved, which plays a vital role in the microwave absorption performance. As expected, the optimized aerogels harvest excellent performance, including broad effective bandwidth and strong reflection loss at low filling ratio and thin thickness. This work gives valuable guidance and inspiration for the design of hierarchical materials comprised of dimensional gradient structures, which holds great application potential for electromagnetic wave attenuation. "Image missing"


2021 ◽  
Author(s):  
R Rajalakshmi ◽  
Remya K. P. ◽  
Viswanathan Chinnuswamy ◽  
Nagamony Ponpandian

The morphology of a nanoparticle strongly controls the path ofelectronic interaction, which directly correlates to the physicochemical properties and also the electrochemical comportment. Conjoining it with a two-dimensional (2D) material...


Sign in / Sign up

Export Citation Format

Share Document