High-throughput computational screening of 2D materials for thermoelectrics

2020 ◽  
Vol 8 (37) ◽  
pp. 19674-19683
Author(s):  
Sevil Sarikurt ◽  
Tuğbey Kocabaş ◽  
Cem Sevik

High-performance thermoelectric materials are critical in recuperating the thermal losses in various machinery and promising in renewable energy applications.

2019 ◽  
Vol 316 ◽  
pp. 202-218 ◽  
Author(s):  
Sumita Goswami ◽  
Gowra Raghupathy Dillip ◽  
Suman Nandy ◽  
Arghya Narayan Banerjee ◽  
Ana Pimentel ◽  
...  

Author(s):  
Tao Fan ◽  
Artem R. Oganov

Searching for thermoelectric materials with high energy conversion efficiency is important to solve the energy and environment issues of our society. In this work, we studied the thermoelectric-related transport properties...


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Ibrahim Abuishmais ◽  
Tore M. Undeland

The unique properties of SiC devices enable substantial improvement of existing power conversion systems. SiC devices offer lower conduction and switching losses which increases converter efficiency. With high switching speed ability, employing SiC is expected to reduce weight and cost of conversion systems. This paper investigates the potential impact of SiC devices on renewable energy applications.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Delong Li ◽  
Youning Gong ◽  
Yuexing Chen ◽  
Jiamei Lin ◽  
Qasim Khan ◽  
...  

AbstractThermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power. Moreover, the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades. Among these compounds, layered two-dimensional (2D) materials, such as graphene, black phosphorus, transition metal dichalcogenides, IVA–VIA compounds, and MXenes, have generated a large research attention as a group of potentially high-performance thermoelectric materials. Due to their unique electronic, mechanical, thermal, and optoelectronic properties, thermoelectric devices based on such materials can be applied in a variety of applications. Herein, a comprehensive review on the development of 2D materials for thermoelectric applications, as well as theoretical simulations and experimental preparation, is presented. In addition, nanodevice and new applications of 2D thermoelectric materials are also introduced. At last, current challenges are discussed and several prospects in this field are proposed.


2020 ◽  
Vol 5 (4) ◽  
pp. 725-742 ◽  
Author(s):  
Zenan Shi ◽  
Wenyuan Yang ◽  
Xiaomei Deng ◽  
Chengzhi Cai ◽  
Yaling Yan ◽  
...  

The combination of machine learning and high-throughput computation for the screening of MOFs with high performance.


2014 ◽  
Vol 925 ◽  
pp. 619-624
Author(s):  
Y.M.Y. Buswig ◽  
Wahyu Mulyo Utomo ◽  
Zainal Alam Haron ◽  
S.S. Yi

A renewable energy source that works alone can’t achieve customers’ requirements for a stable power supply. Therefore, the paper proposes a multi-input converter for hybrid renewable energy system. This converter is designed for two input sources, PV and wind generator in order to design high efficiency and high performance converters for renewable energy applications. The proposed multi-input converter is composed by interleaved technique with two step-up converters and the two inputs are accommodated with some extra semiconductors, inductances and diodes. The modes of operation based on the status of the four switches, where S1 and S2 operate as main switches in order to deliver energy from both voltage sources. A constant output power to the load is provided by switching S3 switch, which guarantied the appropriate output voltage by reduce the ripple and improve the reliability. Simulations of multi-input converter has been performed using MATLAB/SIMULINK. The simulation results confirm the validity of the proposed method, which can be seen as a promising new topology that ensure multi-input converter suitable for renewable energy applications.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Li You ◽  
Zhili Li ◽  
Quanying Ma ◽  
Shiyang He ◽  
Qidong Zhang ◽  
...  

Recent advances in high-throughput (HTP) computational power and machine learning have led to great achievements in exploration of new thermoelectric materials. However, experimental discovery and optimization of thermoelectric materials have long relied on the traditional Edisonian trial and error approach. Herein, we demonstrate that ultrahigh thermoelectric performance in a Cu-doped PbSe-PbS system can be realized by HTP experimental screening and precise property modulation. Combining the HTP experimental technique with transport model analysis, an optimal Se/S ratio showing high thermoelectric performance has been efficiently screened out. Subsequently, based on the screened Se/S ratio, the doping content of Cu has been subtly adjusted to reach the optimum carrier concentration. As a result, an outstanding peak zT~1.6 is achieved at 873 K for a 1.8 at% Cu-doped PbSe0.6S0.4 sample, which is the superior value among the n-type Te-free lead chalcogenides. We anticipate that current work will stimulate large-scale unitization of the HTP experimental technique in the thermoelectric field, which can greatly accelerate the research and development of new high-performance thermoelectric materials.


Sign in / Sign up

Export Citation Format

Share Document