The review on the bioavailability, bio-efficacies and novel delivery systems for piperine

2021 ◽  
Author(s):  
Weiyun Zhang ◽  
Qianwang Zheng ◽  
Mingyue Song ◽  
Jie Xiao ◽  
Yong Cao ◽  
...  

As the major naturally occurring alkaloid in pepper with pungent odor, piperine is known for its beneficial bio-functions and therapeutic effects. In this work, the bioavailability and biological activities of...




Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1180
Author(s):  
Zvezdelina Yaneva ◽  
Donika Ivanova

Epidemiological studies and clinical investigations proposed that catechins extracts alone may not provide a sufficient level of bioactivities and promising therapeutic effects to achieve health benefits due to a number of constraints related to poor oral absorption, limited bioavailability, sensitivity to oxidation, etc. Modern scientific studies have reported numerous techniques for the design of micro- and nano-bio-delivery systems as novel and promising strategies to overcome these obstacles and to enhance catechins’ therapeutic activity. The objective assessment of their benefits, however, requires a critical comparative estimation of the advantages and disadvantages of the designed catechins-biocarrier systems, their biological activities and safety administration aspects. In this respect, the present review objectively outlines, compares and assesses the recent advances related to newly developed design concepts of catechins’ encapsulation into various biopolymer carriers and their release behaviour, with a special emphasis on the specific physiological biofunctionalities of the innovative bioflavonoid/biopolymer delivery systems.



Author(s):  
Milad Ashrafizadeh ◽  
Zahra Ahmadi ◽  
Reza Mohammadinejad ◽  
Elham Ghasemipour Afshar

AbstractTo date, a large number of synthetic drugs have been developed for the treatment and prevention of different disorders, such as neurodegenerative diseases, diabetes mellitus, and cancer. However, these drugs suffer from a variety of drawbacks including side effects and low efficacy. In response to this problem, researchers have focused on the plant-derived natural products due to their valuable biological activities and low side effects. Flavonoids consist of a wide range of naturally occurring compounds exclusively found in fruits and vegetables and demonstrate a number of pharmacological and therapeutic effects. Tangeretin (TGN) is a key member of flavonoids that is extensively found in citrus peels. It has different favorable biological activities such as antioxidant, anti-inflammatory, antitumor, hepatoprotective, and neuroprotective effects. In the present review, we discuss the various pharmacological and therapeutic effects of TGN and then, demonstrate how this naturally occurring compound affects signaling pathways to exert its impacts.



2020 ◽  
Vol 20 (2) ◽  
pp. 116-133 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Zahra Ahmadi ◽  
Reza Mohammadinejad ◽  
Tahereh Farkhondeh ◽  
Saeed Samarghandian

: Curcumin is a naturally occurring polyphenol that is isolated from the rhizome of Curcuma longa (turmeric). This medicinal compound has different biological activities, including antioxidant, antibacterial, antineoplastic, and anti-inflammatory. It also has therapeutic effects on neurodegenerative disorders, renal disorders, and diabetes mellitus. Curcumin is safe and well-tolerated at high concentrations without inducing toxicity. It seems that curcumin is capable of targeting the Nrf2 signaling pathway in protecting the cells against oxidative damage. Besides, this strategy is advantageous in cancer therapy. Accumulating data demonstrates that curcumin applies four distinct ways to stimulate the Nrf2 signaling pathway, including inhibition of Keap1, affecting the upstream mediators of Nrf2, influencing the expression of Nrf2 and target genes, and finally, improving the nuclear translocation of Nrf2. In the present review, the effects of curcumin on the Nrf2 signaling pathway to exert its therapeutic and biological activities has been discussed.



2020 ◽  
Vol 27 (35) ◽  
pp. 5970-6014 ◽  
Author(s):  
Md. Jawaid Akhtar ◽  
Mohammad Shahar Yar ◽  
Vinod Kumar Sharma ◽  
Ahsan Ahmed Khan ◽  
Zulphikar Ali ◽  
...  

This review presents the detailed account of factors leading to cancer and design strategy for the synthesis of benzimidazole derivatives as anticancer agents. The recent survey for cancer treatment in Cancer facts and figures 2017 American Chemical Society has shown progressive development in fighting cancer. Researchers all over the world in both developed and developing countries are in a continuous effort to tackle this serious concern. Benzimidazole and its derivatives showed a broad range of biological activities due to their resemblance with naturally occurring nitrogenous base i.e. purine. The review discussed benzimidazole derivatives showing anticancer properties through a different mechanism viz. intercalation, alkylating agents, topoisomerases, DHFR enzymes, and tubulin inhibitors. Benzimidazole derivatives act through a different mechanism and the substituents reported from the earlier and recent research articles are prerequisites for the synthesis of targeted based benzimidazole derivatives as anticancer agents. The review focuses on an easy comparison of the substituent essential for potency and selectivity through SAR presented in figures. This will further provide a better outlook or fulfills the challenges faced in the development of novel benzimidazole derivatives as anticancer.



2020 ◽  
Vol 20 (19) ◽  
pp. 2019-2035
Author(s):  
Esmaeil Sheikh Ahmadi ◽  
Amir Tajbakhsh ◽  
Milad Iranshahy ◽  
Javad Asili ◽  
Nadine Kretschmer ◽  
...  

Naturally occurring naphthoquinones (NQs) comprising highly reactive small molecules are the subject of increasing attention due to their promising biological activities such as antioxidant, antimicrobial, apoptosis-inducing activities, and especially anticancer activity. Lapachol, lapachone, and napabucasin belong to the NQs and are in phase II clinical trials for the treatment of many cancers. This review aims to provide a comprehensive and updated overview on the biological activities of several new NQs isolated from different species of plants reported from January 2013 to January 2020, their potential therapeutic applications and their clinical significance.



2020 ◽  
Vol 16 (8) ◽  
pp. 1071-1077
Author(s):  
Aref G. Ghahsare ◽  
Zahra S. Nazifi ◽  
Seyed M.R. Nazifi

: Over the last decades, several heterocyclic derivatives compounds have been synthesized or extracted from natural resources and have been tested for their pharmaceutical activities. Xanthene is one of these heterocyclic derivatives. These compounds consist of an oxygen-containing central heterocyclic structure with two more cyclic structures fused to the central cyclic compound. It has been shown that xanthane derivatives are bioactive compounds with diverse activities such as anti-bacterial, anti-fungal, anti-cancer, and anti-inflammatory as well as therapeutic effects on diabetes and Alzheimer. The anti-cancer activity of such compounds has been one of the main research fields in pharmaceutical chemistry. Due to this diverse biological activity, xanthene core derivatives are still an attractive research field for both academia and industry. This review addresses the current finding on the biological activities of xanthene derivatives and discussed in detail some aspects of their structure-activity relationship (SAR).



2020 ◽  
Vol 5 (3) ◽  
pp. 224-235
Author(s):  
Harshal A. Pawar ◽  
Bhagyashree D. Bhangale

Background: Lipid based excipients have increased acceptance nowadays in the development of novel drug delivery systems in order to improve their pharmacokinetic profiles. Drugs encapsulated in lipids have enhanced stability due to the protection they experience in the lipid core of these nano-formulations. Phytosomes are newly discovered drug delivery systems and novel botanical formulation to produce lipophilic molecular complex which imparts stability, increases absorption and bioavailability of phytoconstituent. Curcumin, obtained from turmeric (Curcuma longa), has a wide range of biological activities. The poor solubility and wettability of curcumin are responsible for poor dissolution and this, in turn, results in poor bioavailability. To overcome these limitations, the curcumin-loaded nano phytosomes were developed to improve its physicochemical stability and bioavailability. Objective: The objective of the present research work was to develop nano-phytosomes of curcumin to improve its physicochemical stability and bioavailability. Methods: Curcumin-loaded nano phytosomes were prepared by using phospholipid Phospholipon 90 H using a modified solvent evaporation method. The developed curcumin nano phytosomes were evaluated by particle size analyzer and differential scanning calorimetry (DSC). Results: Results indicated that phytosomes prepared using curcumin and lipid in the ratio of 1:2 show good entrapment efficiency. The obtained curcumin phytosomes were spherical in shape with a size less than 100 nm. The prepared nano phytosomal formulation of curcumin showed promising potential as an antioxidant. Conclusion: The phytosomal complex showed sustained release of curcumin from vesicles. The sustained release of curcumin from phytosome may improve its absorption and lowers the elimination rate with an increase in bioavailability.



Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1764
Author(s):  
Anna Kaps ◽  
Paweł Gwiazdoń ◽  
Ewa Chodurek

The search for safe and effective anticancer therapies is one of the major challenges of the 21st century. The ineffective treatment of cancers, classified as civilization diseases, contributes to a decreased quality of life, health loss, and premature mortality in oncological patients. Many natural phytochemicals have anticancer potential. Pentacyclic triterpenoids, characterized by six- and five-membered ring structures, are one of the largest class of natural metabolites sourced from the plant kingdom. Among the known natural triterpenoids, we can distinguish lupane-, oleanane-, and ursane-types. Pentacyclic triterpenoids are known to have many biological activities, e.g., anti-inflammatory, antibacterial, hepatoprotective, immunomodulatory, antioxidant, and anticancer properties. Unfortunately, they are also characterized by poor water solubility and, hence, low bioavailability. These pharmacological properties may be improved by both introducing some modifications to their native structures and developing novel delivery systems based on the latest nanotechnological achievements. The development of nanocarrier-delivery systems is aimed at increasing the transport capacity of bioactive compounds by enhancing their solubility, bioavailability, stability in vivo and ensuring tumor-targeting while their toxicity and risk of side effects are significantly reduced. Nanocarriers may vary in sizes, constituents, shapes, and surface properties, all of which affect the ultimate efficacy and safety of a given anticancer therapy, as presented in this review. The presented results demonstrate the high antitumor potential of systems for delivery of pentacyclic triterpenoids.



Sign in / Sign up

Export Citation Format

Share Document