Electrochemical product engineering towards sustainable recovery and manufacturing of critical metals

2021 ◽  
Author(s):  
Yunting Wang ◽  
Yudong Xue ◽  
Chunhui Zhang

Critical metal products play an irreplaceable role in all aspects of modern society, however, uncertain supply risk pushed their sustainable recycling and manufacturing falling in the central focus. Compared to...

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1197
Author(s):  
Dumitru Mitrica ◽  
Ioana Cristina Badea ◽  
Beatrice Adriana Serban ◽  
Mihai Tudor Olaru ◽  
Denisa Vonica ◽  
...  

The paper is proposing a mini-review on the capability of the new complex concentrated alloys (CCAs) to substitute or reduce the use of critical raw materials in applications for extreme conditions. Aspects regarding the regulations and expectations formulated by the European Union in the most recent reports on the critical raw materials were presented concisely. A general evaluation was performed on the CCAs concept and the research directions. The advantages of using critical metals for particular applications were presented to acknowledge the difficulty in the substitution of such elements with other materials. In order to establish the level of involvement of CCAs in the reduction of critical metal in extreme environment applications, a presentation was made of the previous achievements in the field and the potential for the reduction of critical metal content through the use of multi-component compositions.


Author(s):  
Simon M. Jowitt

Modern society relies on an increasing number of minerals and metals, meaning that over time production of these commodities has significantly increased, especially within the last fifty years. However, metals and minerals are dominantly produced from ore or mineral deposits that are inherently non-renewable as the geological processes that form these resources (and if necessary exhume them to nearer surface environments where they can be exploited) occur at much slower rates (often over thousands or millions of years) than they are being consumed. This at a basic level indicates that at some point we will “run out” of these non-renewable resources. Although this may be true on a very long timescale, this simple view does not take into account a number of different factors, such as changes in the types, sizes, and grades of mineral deposits that are being exploited. Past changes in the mineral and mining sectors have led to a global increase in mineral and metal production throughout the 20th and 21st centuries that has been (more than) matched by an increase in global mineral and metal resources and reserves. This increase in the amount of material available for exploitation has reflected the decreasing cost of mining and energy, the development of new mining and mineral processing technologies, continued exploration success that has led to the discovery of new resources and reserves, and increasing demand, which in real terms has increased the prices of the majority of commodities. However, the potential lifespan of these historic patterns remains unclear, especially given that mineral resources are finite and other aspects that influence metal and mineral production, such as energy costs and environmental and social issues, are becoming increasingly important. This has led to recent concerns focused on a variety of metals and minerals considered to be at potential supply risk, including base metals such as zinc as well as a the so-called critical metals; metals that are associated with supply risk as a result of their concentration of supply, political instability in source countries, or production (and hence reliance) as by-products to primary metals such as Cu or Zn. These risks are compounded by the fact that these critical metals and minerals are essential for numerous often advanced technologies as well as defense and energy production requirements. This review focuses on the key considerations in estimating metal and mineral resources, aspects that need to be considered when estimating current resources and reserves and determining whether we can meet current and future demand. The dynamic nature of global metal and mineral resources means that an in-depth analysis of these data is not within the scope of this review, although the references provided form a comprehensive bibliography for this topic.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Han Hao ◽  
Yong Geng ◽  
James E. Tate ◽  
Feiqi Liu ◽  
Kangda Chen ◽  
...  

AbstractThe majority of transport electrification studies, examining the demand and sustainability of critical metals, have focused on light-duty vehicles. Heavy-duty vehicles have often been excluded from the research scope due to their smaller vehicle stock and slower pace of electrification. This study fills this research gap by evaluating the lithium resource impacts from electrification of the heavy-duty segment at the global level. Our results show that a mass electrification of the heavy-duty segment on top of the light-duty segment would substantially increase the lithium demand and impose further strain on the global lithium supply. The significant impact is attributed to the large single-vehicle battery capacity required by heavy-duty vehicles and the expected battery replacement needed within the lifetime of heavy-duty vehicles. We suggest that the ambition of mass electrification in the heavy-duty segment should be treated with cautions for both policy makers and entrepreneurs.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 519 ◽  
Author(s):  
Jorge Crespo ◽  
Martin Reich ◽  
Fernando Barra ◽  
Juan Verdugo ◽  
Claudio Martínez

Porphyry copper–molybdenum deposits (PCDs) are the world’s most important source of copper, molybdenum and rhenium. Previous studies have reported that some PCDs can have sub-economic to economic grades of critical metals, i.e., those elements that are both essential for modern societies and subject to the risk of supply restriction (e.g., platinum group elements (PGE), rare earth elements (REE), In, Co, Te, Ge, Ga, among others). Even though some studies have reported measured concentrations of Pd and Pt in PCDs, their occurrence and mineralogical forms remain poorly constrained. Furthermore, these reconnaissance studies have focused predominantly on porphyry Cu–Au deposits, but very limited information is available for porphyry Cu–Mo systems. In this contribution, we report the occurrence of critical metal (Pd, Pt, Au, Ag, and Te) inclusions in copper sulfides from one of the largest PCDs in the world, the supergiant Río Blanco-Los Bronces deposit in central Chile. Field emission scanning electron microscope (FESEM) observations of chalcopyrite and bornite from the potassic alteration zone reveal the presence of micro- to nano-sized particles (<1–10 μm) containing noble metals, most notably Pd, Au, and Ag. The mineralogical data show that these inclusions are mostly tellurides, such as merenskyite ((Pd, Pt) (Bi, Te)2), Pd-rich hessite (Ag2Te), sylvanite ((Ag,Au)Te2) and petzite (Ag3AuTe2). The data point to Pd (and probably Pt) partitioning in copper sulfides during the high-temperature potassic alteration stage, opening new avenues of research aimed at investigating not only the mobility of PGE during mineralization and partitioning into sulfides, but also at exploring the occurrence of critical metals in porphyry Cu–Mo deposits.


2021 ◽  
Author(s):  
L Corriveau ◽  
J -F Montreuil ◽  
O Blein ◽  
E Potter ◽  
M Ansari ◽  
...  

Australia's and China's resources (e.g. Olympic Dam Cu-U-Au-Ag and Bayan Obo REE deposits) highlight how discovery and mining of iron oxide copper-gold (IOCG), iron oxide±apatite (IOA) and affiliated primary critical metal deposits in metasomatic iron and alkali-calcic (MIAC) mineral systems can secure a long-term supply of critical metals for Canada and its partners. In Canada, MIAC systems comprise a wide range of undeveloped primary critical metal deposits (e.g. NWT NICO Au-Co-Bi-Cu and Québec HREE-rich Josette deposits). Underexplored settings are parts of metallogenic belts that extend into Australia and the USA. Some settings, such as the Camsell River district explored by the Dene First Nations in the NWT, have infrastructures and 100s of km of historic drill cores. Yet vocabularies for mapping MIAC systems are scanty. Ability to identify metasomatic vectors to ore is fledging. Deposit models based on host rock types, structural controls or metal associations underpin the identification of MIAC-affinities, assessment of systems' full mineral potential and development of robust mineral exploration strategies. This workshop presentation reviews public geoscience research and tools developed by the Targeted Geoscience Initiative to establish the MIAC frameworks of prospective Canadian settings and global mining districts and help de-risk exploration for IOCG, IOA and affiliated primary critical metal deposits. The knowledge also supports fundamental research, environmental baseline assessment and societal decisions. It fulfills objectives of the Canadian Mineral and Metal Plan and the Critical Mineral Mapping Initiative among others. The GSC-led MIAC research team comprises members of the academic, private and public sectors from Canada, Australia, Europe, USA, China and Dene First Nations. The team's novel alteration mapping protocols, geological, mineralogical, geochemical and geophysical framework tools, and holistic mineral systems and petrophysics models mitigate and solve some of the exploration and geosciences challenges posed by the intricacies of MIAC systems. The group pioneers the use of discriminant alteration diagrams and barcodes, the assembly of a vocab for mapping and core logging, and the provision of field short courses, atlas, photo collections and system-scale field, geochemical, rock physical properties and geophysical datasets are in progress to synthesize shared signatures of Canadian settings and global MIAC mining districts. Research on a metamorphosed MIAC system and metamorphic phase equilibria modelling of alteration facies will provide a foundation for framework mapping and exploration of high-grade metamorphic terranes where surface and near surface resources are still to be discovered and mined as are those of non-metamorphosed MIAC systems.


Author(s):  
Jorge Crespo ◽  
Martin Reich ◽  
Fernando Barra ◽  
Juan José Verdugo ◽  
Claudio Martínez

Porphyry copper-molybdenum deposits (PCDs) are the world’s most important source of copper, molybdenum and rhenium. Previous studies have reported that some PCDs can have sub-economic to economic grades of critical metals, i.e., those elements that are both essential for modern societies and subject to the risk of supply restriction (e.g., platinum group elements (PGE), rare earth elements (REE), In, Co, Te, Ge, Ga, among others). Even though some studies have reported measured concentrations of Pd and Pt in PCDs, their occurrence and mineralogical form remain poorly constrained. Furthermore, these reconnaissance studies have focused predominantly on porphyry Cu-Au deposits, but very limited information is available for porphyry Cu-Mo systems. In this contribution, we report the occurrence of critical metal (Pd, Pt, Au, Ag, and Te) inclusions in copper sulfides from the world’s largest PCD, the supergiant Río Blanco-Los Bronces deposit in central Chile. Field emission scanning electron microscope (FESEM) observations of chalcopyrite and bornite from the potassic alteration zone reveal the presence of micro- to nano-sized particles (&lt;1-10 μm) of noble metals, most notably Pd, Au, and Ag. The high-resolution data show that these inclusions are mostly tellurides, such as merenskyite [PdTe2], Pd-rich hessite [Ag2Te], sylvanite [(Ag, Au)Te2] and petzite [Ag3AuTe2]. The data point to Pd (and probably Pt) partitioning in copper sulfides during the high-temperature potassic alteration stage, opening new avenues of research aimed at investigating not only the mobility of PGE during mineralization and partitioning into sulfides, but also at evaluating the potential of porphyry Cu-Mo deposits as a source for noble metals.


NDT World ◽  
2015 ◽  
Vol 18 (3) ◽  
pp. 54-59
Author(s):  
Цыганов ◽  
Sergey Tsyganov ◽  
Вайнберг ◽  
Eduard Vainberg ◽  
Вайнберг ◽  
...  

The current state of digital additive technologies and areas of their application is analyzed in the paper. The main sources and sizes of geometry errors as well as porosity of additive metal products are estimated. It is shown that post-processing of matching surfaces is necessary at assembling critical mechanical units containing additive parts. Non-destructive testing of critical additive metal articles with complex internal structure does not conform to capabilities of traditional NDT methods; new NDT problems of additive parts are formulated. A unique role of high-energy computed tomography is substantiated and experimentally confirmed; CT can become an important factor in further development of additive technologies by providing a feedback between a technology, an internal structure and performance abilities of the products.


2018 ◽  
Vol 20 (4) ◽  
pp. 700-705 ◽  

<p>Sustainable recovery of critical metals (CM) from Waste Electrical and Electronic Equipment (WEEE) in the European Union (EU) requires information for detailed analysis, monitoring and decision-making. Related knowledge is currently insufficient or disseminated through the network of stakeholders. This paper assesses the requirements of an adequate Database Management System (DBMS) with participation of different actors involved in the recovery of critical metals and analyses the difficulties and the possibilities found for its implementation. The authors define a conceptual scheme of a DBMS to assess the information requirements and to establish the interactions between different actors of the WEEE supply chain, with the aim of supplying standardized information for management and research. Barriers are studied through a survey to identify obstacles for its elaboration. Limitations for its development are addressed and practical solutions for its elaboration are presented.</p>


资源科学 ◽  
2020 ◽  
Vol 42 (8) ◽  
pp. 1477-1488
Author(s):  
Jianbai HUANG ◽  
Fang SUN ◽  
Yi SONG ◽  

Sign in / Sign up

Export Citation Format

Share Document