scholarly journals Synergistically complexation of phenol functionalized polymer induced in-situ microfiber formation for 3D printing of marine-based hydrogel

2022 ◽  
Author(s):  
Hafez Jafari ◽  
Christine Delporte ◽  
Katrien V. Bernaerts ◽  
Houman Alimoradi ◽  
Lei Nie ◽  
...  

The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach...

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1655 ◽  
Author(s):  
Giuseppe Melilli ◽  
Irene Carmagnola ◽  
Chiara Tonda-Turo ◽  
Fabrizio Pirri ◽  
Gianluca Ciardelli ◽  
...  

The development of new bio-based inks is a stringent request for the expansion of additive manufacturing towards the development of 3D-printed biocompatible hydrogels. Herein, methacrylated carboxymethyl cellulose (M-CMC) is investigated as a bio-based photocurable ink for digital light processing (DLP) 3D printing. CMC is chemically modified using methacrylic anhydride. Successful methacrylation is confirmed by 1H NMR and FTIR spectroscopy. Aqueous formulations based on M-CMC/lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator and M-CMC/Dulbecco’s Modified Eagle Medium (DMEM)/LAP show high photoreactivity upon UV irradiation as confirmed by photorheology and FTIR. The same formulations can be easily 3D-printed through a DLP apparatus to produce 3D shaped hydrogels with excellent swelling ability and mechanical properties. Envisaging the application of the hydrogels in the biomedical field, cytotoxicity is also evaluated. The light-induced printing of cellulose-based hydrogels represents a significant step forward in the production of new DLP inks suitable for biomedical applications.


2009 ◽  
Vol 79-82 ◽  
pp. 1671-1674 ◽  
Author(s):  
Xiao Ying Lu ◽  
Hao Wang ◽  
Sheng Yi Xia ◽  
Jian Xin Wang ◽  
Jie Weng

Carbon nanotubes (CNTs)/hydroxyapatite (HA) nanocomposites have been successfully fabricated by a novel method for the biomedical applications, which is in situ growing CNTs in HA matrix in a chemical vapor deposition (CVD) system. The results show that it is feasible to in situ grow CNTs in HA matrix by CVD for the fabrication of CNTs/HA nanocomposites. Multi-walled CNTs with 50-80 nm in diameter have been grown in situ from HA matrix with the pretreatment of sintering at 1473K in air. The nanocomposites are composed with carbon crystals in CNTs form, HA crystallites and calcium phosphate crystallites, one of most important CaP bioceramics. And the CNTs content is about 1% proportion by weight among the composites in our experiments, which can enhance the HA mechanical properties and the CNTs content does not affect the HA performances. These CNTs/HA nanocomposites have the potential application in the biomedical fields.


2020 ◽  
Vol 12 (29) ◽  
pp. 33267-33275 ◽  
Author(s):  
Wangqu Liu ◽  
Ozan Erol ◽  
David H. Gracias

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1651 ◽  
Author(s):  
Saisai Huang ◽  
Qiufang Jiang ◽  
Bin Yu ◽  
Yujing Nie ◽  
Zhongqing Ma ◽  
...  

Acetylation and in situ polymerization are two typical chemical modifications that are used to improve the dimensional stability of bamboo. In this work, the combination of chemical modification of vinyl acetate (VA) acetylation and methyl methacrylate (MMA) in situ polymerization of bamboo was employed. Performances of the treated bamboo were evaluated in terms of dimensional stability, wettability, thermal stability, chemical structure, and dynamic mechanical properties. Results show that the performances (dimensional stability, thermal stability, and wettability) of bamboo that was prepared via the combined pretreatment of VA and MMA (VA/MMA-B) were better than those of raw bamboo, VA single-treated bamboo (VA-B), and MMA single-treated bamboo (MMA-B). According to scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses, VA and MMA were mainly grafted onto the surface of the cell wall or in the bamboo cell lumen. The antiswelling efficiency and contact angle of VA/MMA-B increased to maximum values of 40.71% and 107.1°, respectively. From thermogravimetric analysis (TG/DTG curves), the highest onset decomposition temperature (277 °C) was observed in VA/MMA-B. From DMA analysis, the storage modulus (E’) of VA/MMA-B increased sharply from 15,057 Pa (untreated bamboo) to 17,909 Pa (single-treated bamboo), and the glass transition temperature was improved from 180 °C (raw bamboo) to 205 °C (single-treated bamboo).


2020 ◽  
pp. 002199832095347
Author(s):  
Chaofu Zhang ◽  
Yuichi Tominaga ◽  
Kimiyasu Sato ◽  
Yusuke Imai

The good dispersion and chemical modification of alumina (Al2O3) nanoparticles as filler were simultaneously performed by a wet–jet milling (WJM) process to disperse the nanoparticles effectively in the polymeric composite. The grafting densities of Al2O3 nanoparticles silane–coupling modified by WJM increased from 0.73 to 1.84 molecules/nm2 in hexyltriethoxysilane, and from 0.65 to 1.09 molecules/nm2 in 3–glycidoxypropyltriethoxysilane. Furthermore, the Al2O3 nanoparticles were dispersed to the primary particle size. In addition, the mechanical properties of the Al2O3/epoxy composite prepared by the in–situ mixing process were higher than those prepared by conventional dry mixing process. As results, the mechanical properties of the Al2O3/epoxy composite could be improved by optimizing the dispersion, chemical modification of the nanoparticles and mixing process of nanoparticles and polymer.


2019 ◽  
Vol 6 (10) ◽  
pp. 105410 ◽  
Author(s):  
Mehdi Mahmoudian ◽  
Ahmad Poursattar Marjani ◽  
Rezgar Hasanzadeh ◽  
Ehsan Nozad ◽  
Sajjad Mamaghani Shishavan ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jin Hyun Lee ◽  
Wen Jiao Han ◽  
Hyo Seon Jang ◽  
Hyoung Jin Choi

Abstract Magneto-responsive hydrogels (MRHs) have attracted considerable attention in various applications owing to their smart response to an externally applied magnetic field. However, their practical uses in biomedical fields are limited by their weak mechanical properties and possible toxicity to the human body. In this study, tough, biocompatible, and magneto-responsive nanocomposite hydrogels (MR_NCHs) were developed by the in-situ free-radical polymerization of N, N-dimethylacrylamide (DMAAm) and laponite and Fe3O4 nanoparticles. The effects of the concentrations of DMAAm, water, and laponite and Fe3O4 nanoparticles in the pre-gel solutions or mixtures on the viscoelastic and mechanical properties of the corresponding hydrogels were examined by performing rheological and tensile tests, through which the mixture composition producing the best MR_NCH system was optimized. The effects were also explained by the possible network structures of the MR_NCHs. Moreover, the morphology, chemical structure, and thermal and mechanical properties of the MR_NCHs were analyzed, while comparing with those of the poly(DMAAm) (PDMAAm) hydrogels and laponite/PDMAAm NCHs. The obtained optimal MR_NCH exhibited noticeable magnetorheological (MR) behavior, excellent mechanical properties, and good biocompatibility. This study demonstrates how to optimize the best Fe3O4/laponite/PDMAAm MR_NCH system and its potential as a soft actuator for the pharmaceutical and biomedical applications.


2021 ◽  
Vol 170 ◽  
pp. 113760
Author(s):  
Ping Cheng ◽  
Kui Wang ◽  
Xuanzhen Chen ◽  
Jin Wang ◽  
Yong Peng ◽  
...  

2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

Sign in / Sign up

Export Citation Format

Share Document