Standardization and application of external (in air) Particle Induced Gamma Emission (PIGE) method for rapid and non-destructive quantification of light elements at major to trace concentrations in coal, bottom ash and coke samples

Author(s):  
SUDEEP KUMAR KUMAR SAMANTA ◽  
Arijit Sengupta ◽  
S Ghorui ◽  
Raghunath Acharya ◽  
Pradeep Kumar Pujari

Coal is an important energy source and its quality evaluation in terms of ash content and other element like B and F is a necessity. An external (in air) Particle...

2015 ◽  
Vol 1125 ◽  
pp. 370-376
Author(s):  
Ahmad Farhan Hamzah ◽  
Mohd Haziman Wan Ibrahim ◽  
Norwati Jamaluddin ◽  
Ramadhansyah Putra Jaya ◽  
Norul Ernida Zainal Abidin

The influence of coal bottom ash on fresh properties of self-compacting concrete (SCC) were presented in this paper. Self-compacting concrete mixtures were produced by 0.40 water/powder ratio and coal bottom ash as a replacement of fine aggregates in varying percentages of 0%, 10%, 15%, 20%, 25% and 30%. The fresh concretes were tested for the key workability belongings of self-compacting concrete such as passing and filling abilities and segregation resistance. The fresh properties were investigated by slump flow; T500 spread time, sieve segregation and L-box test. It was found that the slump flow decreased whereas the T500 spread time increased with higher coal bottom ash content. The L-box blocking ratios changed from 0.92 to 0.65 and were mostly showed satisfactory blocking ratio. The presence of coal bottom ash improved the stability of SCC mixture and the segregation index obtained from sieve test reduced with greater bottom ash content. It can be concluding that the filling and passing ability of SCC decreased when the amount of coal bottom ash content increased. In addition, the segregation resistance index decreased with higher coal bottom ash content.


2021 ◽  
Vol 2104 (1) ◽  
pp. 012003
Author(s):  
N H Haryanti ◽  
Suryajaya ◽  
H Wardhana ◽  
S Husain ◽  
R Noor ◽  
...  

Abstract This research made three kinds of briquettes from various biomass waste, including alaban wood charcoal and rubber seed shells mixed with coal bottom ash and coal fly ash. The purpose of the study was to obtain the characteristics and quality of briquette combustion. Making briquettes is by drying, grinding, and sifting raw materials then mixed with adhesive, printing and drying. Briquettes were made with variations in composition and pressure and the particle size of the material passing through the 50 and 250 mesh sieves. Briquettes produced from alaban wood charcoal and coal bottom ash, or fly ash, obtained more bottom ash or fly ash composition characteristics. The moisture content and calorific value would be lower while the ash content was higher. While the initial ignition time, the combustion duration is getting longer, but the burning rate would decrease. Briquettes made from rubber seed shells and coal bottom ash obtained variations in composition and pressure that affect the characteristics and quality of combustion. The higher the rubber seed shell composition and pressure, the lower the water and ash content, but the calorific value increased.


2019 ◽  
Vol 4 (3) ◽  
pp. 113-124
Author(s):  
Ninis Hadi Haryanti ◽  
Suryajaya Suryajaya ◽  
Henry Wardhana ◽  
Rijali Noor

Research has been carried out on the use of coal bottom ash as a material for making briquettes as an alternative fuel. Carbonized of rubber seed shells and Halaban wood were used as mixtures and tapioca flour as adhesives. The composition used in making Halaban wood charcoal and coal bottom ash briquettes is 100%: 0%, 90%: 10%, 80%: 20% and 70%: 30%. Tapioca flour used was as much as 5%, the pressure of 150 kg/cm2 and the size of 250 meshes. While for rubber seed shell and coal bottom ash briquettes, the composition used was with ratio 60%: 40% and 70%: 30%; the pressure used was 100, 150 and 200 kg/cm2 and the size of 50 meshes. Tapioca flour used was as much as 5%. The results of the characterization of rubber seed shell and coal bottom ash briquettes were water content (4.35 - 10.65)%, ash content (12.53 - 17.26)%, and calorific value (3,597.59 - 4,549.88) cal/g. While the characterization results of Halaban wood charcoal and coal bottom ash briquettes were water content (2.947 – 4.097)%, ash content (0.383 – 26.667)%, and calorific value (4,749-6,621) cal/g. The results showed that if coal bottom ash in the composition were higher, it would increase the water content and ash content of the briquettes, while the calorific value would be lower. The recommended composition of coal bottom ash was about 10-20 %. While if the briquettes pressure was higher, the water content, ash content and calorific value would be smaller. The recommended pressure was 150 kg /cm2.


2020 ◽  
Vol 4 (1) ◽  
pp. 19-26
Author(s):  
Ninis Hadi Haryanti, Henry Wardhana, Suryajaya

Abstrak – Pada umumnya ukuran partikel yang digunakan dalam pembuatan briket bervariasi antara 12 -100 mesh. Pada penelitian ini, ukuran partikel yang digunakan adalah 250 mesh (59,4 µm). Dilakukan kajian analisis proksimat briket terhadap variasi tekanan pencetakan. Briket dibuat dari campuran limbah industri arang kayu alaban dan abu dasar batubara. Kedua bahan dalam bentuk serbuk yang lolos pada saringan 250 mesh.Ukuran partikel yang lebih kecil diharapkan menghasilkan briket yang lebih baik dan tidak  rapuh serta dapat digunakan sebagai bahan bakar alternatif untuk rumah tangga maupun industri dan penggunaan bahan limbah diharapkan membantu pemecahan permasalahan lingkungan. Variasi tekanan yang digunakan adalah 150, 200, 250, 300, dan 350 kg/cm2. Komposisi campuran limbah arang kayu alaban dan abu dasar batubara dengan rasio 90%:10%, sedangkan perekat tepung kanji 5%. Briket dibuat dalam bentuk silinder berukuran 2 × 2 cm. Briket yang sudah dicetak dikeringkan dalam oven pada suhu 120°C selama 4 jam dan didinginkan pada suhu ruang selama 24 jam. Dari hasil uji didapatkan Kadar Air (3,831-5,892) %; Kadar Abu (7,178-10,507) %; Nilai Kalori (5607,467-5732,033) cal/g; Densitas (0,688-0,769) g/cm3; dan Porositas (46,025-47,592) %. Berdasarkan hasil uji, dapat disimpulkan bahwa semakin tinggi nilai tekanan, kadar air, kadar abu, dan porositas akan menurun, sedangkan nilai kalori mencapai nilai tertinggi pada tekanan 200 kg/cm2 kemudian cenderung mengalami penurunan. Direkomendasikan tekanan yang diberikan pada saat pembuatan briket adalah 200 kg/cm2.Kata kunci: abu dasar batubara, arang kayu alaban, briket, tekanan pencetakan, ukuran partikelAbstract – In general, the particle size used in making briquettes were varied in the range of 12 -100 mesh. In this study, the particle size used was 250 meshs (59.4 µm). The effect of press variations to proximate analysis of briquette will be conducted. Briquette was made from a mixture of alaban wood charcoal industrial waste and coal bottom ash. Both materials were crushed in the form of powder passing 250 meshs sieve. The smaller particle size is expected to produce better and less brittle briquettes and could be used as alternative fuels for households and industries, while the use of waste materials is expected to help solve environmental problems. Pressure variations used were 150, 200, 250, 300, and 350 kg/cm2. The composition of the mixture of alaban wood charcoal waste and coal bottom ash wasin ratio 90%: 10%, while starch adhesive of 5% was added. Briquettes were made in the form of cylinders (2 × 2 cm in size). Briquettes were dried in an oven at 120°C for 4 hours and cooled at room temperature for 24 hours. The results obtained were Moisture Content (3,831-5,892)%; Ash Content (7,178-10,507)%; Heating Value (5607,467-5732,033) cal / g; Density (0.688-0.769) g/cm3; and Porosity (46,025-47,592)%. Based on the results, it could be concluded that as the pressure increased, water content, ash content, and porosity were decreased. The calorie value reaches the highest value at a pressure of 200 kg/cm2 then tends to decrease. It is recommended that the pressure applied at the time of briquette making is 200 kg/cm2.Key words: coal bottom ash, alaban charcoal, briquettes, pressure, particle size


J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 223-232
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Ground coal bottom ash is considered a novel material when used in common cement production as a blended cement. This new application must be evaluated by means of the study of its pozzolanic properties. Coal bottom ash, in some countries, is being used as a replacement for natural sand, but in some others, it is disposed of in a landfill, leading thus to environmental problems. The pozzolanic properties of ground coal bottom ash and coal fly ash cements were investigated in order to assess their pozzolanic performance. Proportions of coal fly ash and ground coal bottom ash in the mixes were 100:0, 90:10, 80:20, 50:50, 0:100. Next, multicomponent cements were formulated using 10%, 25% or 35% of ashes. In general, the pozzolanic performance of the ground coal bottom ash is quite similar to that of the coal fly ash. As expected, the pozzolanic reaction of both of them proceeds slowly at early ages, but the reaction rate increases over time. Ground coal bottom ash is a promising novel material with pozzolanic properties which are comparable to that of coal fly ashes. Then, coal bottom ash subjected to an adequate mechanical grinding is suitable to be used to produce common coal-ash cements.


2021 ◽  
Vol 13 (14) ◽  
pp. 8031
Author(s):  
Syakirah Afiza Mohammed ◽  
Suhana Koting ◽  
Herda Yati Binti Katman ◽  
Ali Mohammed Babalghaith ◽  
Muhamad Fazly Abdul Patah ◽  
...  

One effective method to minimize the increasing cost in the construction industry is by using coal bottom ash waste as a substitute material. The high volume of coal bottom ash waste generated each year and the improper disposal methods have raised a grave pollution concern because of the harmful impact of the waste on the environment and human health. Recycling coal bottom ash is an effective way to reduce the problems associated with its disposal. This paper reviews the current physical and chemical and utilization of coal bottom ash as a substitute material in the construction industry. The main objective of this review is to highlight the potential of recycling bottom ash in the field of civil construction. This review encourages and promotes effective recycling of coal bottom ash and identifies the vast range of coal bottom ash applications in the construction industry.


Sign in / Sign up

Export Citation Format

Share Document