Dual-responsive nanoplatform with feedback amplification improves antitumor efficacy of photodynamic therapy

Nanoscale ◽  
2022 ◽  
Author(s):  
Yuan Xue ◽  
Shuting Bai ◽  
Leilei Wang ◽  
Shi Luo ◽  
Zhirong Zhang ◽  
...  

A good photosensitizer (PS) delivery system could enhance efficiency and reduce side effects of anti-tumor photodynamic therapy (PDT) by improving accumulation in tumor, uptake by tumor cells, and intracellular release...

2021 ◽  
Author(s):  
Chao Wang ◽  
Beilei Wang ◽  
Shuaijun Zou ◽  
Bo Wang ◽  
Guoyan Liu ◽  
...  

Nanodrug delivery systems have been used extensively to improve the tumor-targeting ability and reduce the side effects of anticancer drugs. In this study, nanomicelles responsive to dual stimuli were designed...


Author(s):  
A.Semkina Semkina ◽  
M.Abakumov Abakumov ◽  
P.Ostroverkhov Ostroverkhov ◽  
M. Grin

In this work, the MNP-HSA-PEG-PS@4 complex was obtained and its physicochemical properties were studied. Biological studies have also been conducted. Namely, the ability of the drug to accumulate in CT26 tumor cells in vitro and the kinetics of drug accumulation in the tumor in vivo were studied. Then, the effectiveness of photodynamic therapy was studied under different conditions. The maximum therapeutic effect was achieved with irradiation at 1 hour after injection of the drug.


2018 ◽  
Vol 6 (46) ◽  
pp. 7750-7759 ◽  
Author(s):  
Zhaoming Guo ◽  
Kun Zheng ◽  
Zhenquan Tan ◽  
Ye Liu ◽  
Ziyin Zhao ◽  
...  

We have designed a nano-drug delivery system ADH-1-HA-MTN, which can overcome the drug resistance of tumor cells based on an EMT cell targeting strategy in combination with PDT.


2016 ◽  
Vol 7 (9) ◽  
pp. 1813-1825 ◽  
Author(s):  
Hong Yu Yang ◽  
Moon-Sun Jang ◽  
Guang Hui Gao ◽  
Jung Hee Lee ◽  
Doo Sung Lee

A schematic of the complete process of DOX-loaded mPEG-SS-PNLG micelles uptake into tumor cells and intracellular release of DOX; size distribution of mPEG-SS-PNLG (90%) micelles and in vivo antitumor efficacy.


2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


2020 ◽  
Vol 27 (13) ◽  
pp. 2118-2132 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Hakan Ozben ◽  
Ferhat Hanikoglu ◽  
Tomris Ozben

: Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.


2019 ◽  
Vol 14 (3) ◽  
pp. 280-291 ◽  
Author(s):  
Jaleh Varshosaz ◽  
Farshid Hassanzadeh ◽  
Batool Hashemi-Beni ◽  
Mohsen Minaiyan ◽  
Saeedeh Enteshari

Background: Due to the low water solubility of Docetaxel (DTX), it is formulated with ethanol and Tween 80 with lots of side effects. For this reason, special attention has been paid to formulate it in new drug nano-carriers. Objective: The goal of this study was to evaluate the safety, antitumor activity and tissue distribution of the novel synthesized Raloxifene (RA) targeted polymeric micelles. Methods: DTX-loaded RA-targeted polymeric micelles composed of poly(styrene-maleic acid)- poly(amide-ether-ester-imide)-poly(ethylene glycol) (SMA-PAEE-PEG) were prepared and their antitumor activity was studied in MC4-L2 tumor-bearing mice compared with non-targeted micelles and free DTX. Safety of the micelles was studied by Hematoxylin and Eosin (H&E) staining of tumors and major organs of the mice. The drug accumulation in the tumor and major organs was measured by HPLC method. Results: The results showed better tumor growth inhibition and increased survival of mice treated with DTX-loaded in targeted micelles compared to the non-targeted micelles and free DTX. Histopathological studies, H&E staining of tumors and immunohistochemical examination showed the potential of DTX-loaded RA-targeted micelles to inhibit tumor cells proliferation. The higher accumulation of the DTX in the tumor tissue after injection of the micelles compared to the free DTX may indicate the higher uptake of the targeted micelles by the G-Protein-Coupled Estrogen Receptors (GPER). Conclusion: The results indicate that RA-conjugated polymeric micelles may be a strong and effective drug delivery system for DTX therapy and uptake of the drug into tumor cells, and overcome the disadvantages and side effects of conventional DTX.


RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15323-15331
Author(s):  
Yao Xu ◽  
Xiang Wang ◽  
Kang Song ◽  
Jun Du ◽  
Jinliang Liu ◽  
...  

Three new iridium complexes were synthesized and fabricated with BSA to form nano-photosensitizers, which can catalyze oxygen to produce singlet oxygen to achieve photodynamic therapy of tumor cells.


2021 ◽  
Vol 64 (8) ◽  
pp. 4787-4809
Author(s):  
Ravindra R. Cheruku ◽  
Erin C. Tracy ◽  
Walter Tabaczynski ◽  
Joseph R. Missert ◽  
Heinz Baumann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document