Phosphonate/zwitterionic/cationic terpolymer as high-efficiency bactericidal and antifouling coating for metallic substrates

Author(s):  
Xiao Zhang ◽  
Li Liu ◽  
Wan Peng ◽  
Xiaohan Dong ◽  
Yahui Gu ◽  
...  

Bacteria associated infection is a critical challenge for metallic implants & devices in biomedical applications. Here, we report the phosphonate/zwitterionic/quaternary amine block polymers as a new type of antifouling and...

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1230
Author(s):  
Vega Lloveras ◽  
José Vidal-Gancedo

The search for new biomedical applications of dendrimers has promoted the synthesis of new radical-based molecules. Specifically, obtaining radical dendrimers has opened the door to their use in various fields such as magnetic resonance imaging, as anti-tumor or antioxidant agents, or the possibility of developing new types of devices based on the paramagnetic properties of organic radicals. Herein, we present a mini review of radical dendrimers based on polyphosphorhydrazone, a new type of macromolecule with which, thanks to their versatility, new metal-free contrast agents are being obtained, among other possible applications.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiang Ouyang ◽  
Ling Zhang ◽  
Leijiao Li ◽  
Wei Chen ◽  
Zhongmin Tang ◽  
...  

Abstract Stanene (Sn)-based materials have been extensively applied in industrial production and daily life, but their potential biomedical application remains largely unexplored, which is due to the absence of the appropriate and effective methods for fabricating Sn-based biomaterials. Herein, we explored a new approach combining cryogenic exfoliation and liquid-phase exfoliation to successfully manufacture two-dimensional (2D) Sn nanosheets (SnNSs). The obtained SnNSs exhibited a typical sheet-like structure with an average size of ~ 100 nm and a thickness of ~ 5.1 nm. After PEGylation, the resulting PEGylated SnNSs (SnNSs@PEG) exhibited good stability, superior biocompatibility, and excellent photothermal performance, which could serve as robust photothermal agents for multi-modal imaging (fluorescence/photoacoustic/photothermal imaging)-guided photothermal elimination of cancer. Furthermore, we also used first-principles density functional theory calculations to investigate the photothermal mechanism of SnNSs, revealing that the free electrons in upper and lower layers of SnNSs contribute to the conversion of the photo to thermal. This work not only introduces a new approach to fabricate 2D SnNSs but also establishes the SnNSs-based nanomedicines for photonic cancer theranostics. This new type of SnNSs with great potential in the field of nanomedicines may spur a wave of developing Sn-based biological materials to benefit biomedical applications.


Author(s):  
Guili Ge ◽  
Lin Li ◽  
Dan Wang ◽  
Mingjian Chen ◽  
Zhaoyang Zeng ◽  
...  

Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, easy surface functionalization, making them widely used in biological...


2015 ◽  
Vol 05 (03) ◽  
pp. 1550022 ◽  
Author(s):  
Jiří Erhart

Main aim of the presented paper is the theoretical analysis and experimental verification of the transformation parameters for the new type of nonhomogeneously poled ring transformer. The input part is poled in the thickness direction and output part in the radial direction. Two transformer geometries are studied — the input part is at inner ring segment, or it is at the outer ring segment. The optimum electrode size aspect ratios have been found experimentally as [Formula: see text] for the ring with aspect ratio [Formula: see text]. The fundamental as well as higher overtone resonances were studied for the transformation ratio, the optimum resistive load, efficiency and no-load transformation ratio. Higher overtones have better transformation parameters compared to the fundamental resonance. The new type ring transformer exhibits very high transformation ratios up to 200 under no-load and up to 13.4 under a high efficiency of 97% at the optimum load conditions of 10 [Formula: see text]. Strong electric field gradient at the output circuit is applicable for the electrical discharge generation.


2012 ◽  
Vol 628 ◽  
pp. 497-499
Author(s):  
Mei Ling An ◽  
Yan Gui Du

The pipe thread forming machine was innovatively designed in the article, using Pro/E as a design tool, we built the structural model of the pipe thread forming machine and performed interference detection and movement simulation for it, on the basis of this, we made a physical prototype. And our experiment showed the complete machine has the characteristics of high efficiency, tight structure, small volume and light weight, and it was easy to move.


Author(s):  
Riki Iwai ◽  
Nobuyuki Kobayashi

This paper establishes a new type component mode synthesis method for a flexible beam element based on the absolute nodal coordinate formulation. The deformation of the beam element is defined as the sum of the global shape function and the analytical clamped-clamped beam modes. This formulation leads to a constant and symmetric mass matrix as the conventional absolute nodal coordinate formulation, and makes it possible to reduce the system coordinates of the beam structure which undergoes large rotations and large deformations. Numerical examples show that the excellent agreements are examined between the presented formulation and the conventional absolute nodal coordinate formulation. These results demonstrate that the presented formulation has high accuracy in the sense that the presented solutions are similar to the conventional ones with the less system coordinates and high efficiency in computation.


Author(s):  
A. K. Pogosian ◽  
T. R. Martirosyan

Development of new type plastic lubricants capable of sustaining high pressures is thus important by using natural minerals. The effect of surfactant ration and structure of thickener nano-particles surfaces on the tribological properties of bentonite-based greases was studied. The best anti-friction and anti-wear properties of plastic lubricants were revealed at the particles modified by quaternary amine and urotropine type ammonium salts, and the necessary ratio for the bentonite particles surface modification by quarterly ammonium salts was revealed, which provide the best tribological properties of composites.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 916 ◽  
Author(s):  
Georges Chedid ◽  
Ali Yassin

Materials science has seen a great deal of advancement and development. The discovery of new types of materials sparked the study of their properties followed by applications ranging from separation, catalysis, optoelectronics, sensing, drug delivery and biomedicine, and many other uses in different fields of science. Metal organic frameworks (MOFs) and covalent organic frameworks (COFs) are a relatively new type of materials with high surface areas and permanent porosity that show great promise for such applications. The current study aims at presenting the recent work achieved in COFs and MOFs for biomedical applications, and to examine some challenges and future directions which the field may take. The paper herein surveys their synthesis, and their use as Drug Delivery Systems (DDS), in non-drug delivery therapeutics and for biosensing and diagnostics.


Sign in / Sign up

Export Citation Format

Share Document