Multifunctional Nano-Delivery System Enhances the Chemo-co-Photo Therapy of Tumor Multidrug Resistance via Mitochondrial-Targeting and Inhibiting P-glycoprotein-Mediated Efflux

Author(s):  
Runze Zhao ◽  
Xiaoyue Ning ◽  
Mengqi Wang ◽  
Ao Yu ◽  
Yongjian Wang

Despite the excellent progress of chemotherapy and phototherapy in tumor treatment, their effectiveness on multidrug-resistant tumors (MDR) is still unsatisfactory. One of the main obstacles is drug efflux caused by...

2012 ◽  
Vol 32 (6) ◽  
pp. 559-566 ◽  
Author(s):  
Yan Xu ◽  
Feng Zhi ◽  
Guangming Xu ◽  
Xiaolei Tang ◽  
Sheng Lu ◽  
...  

MDR (multidrug-resistance) represents a major obstacle to successful cancer chemotherapy and is usually accomplished by overexpression of P-gp (P-glycoprotein). Much effort has been devoted to developing P-gp inhibitors to modulate MDR. However, none of the inhibitors on the market have been successful. 1416 [1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)propane hydrochloride (phenoprolamine hydrochloride)] is a new VER (verapamil) analogue with a higher IC50 for blocking calcium channel currents than VER. In the present paper, we examined the inhibition effect of 1416 on P-gp both in vitro and in vivo. 1416 significantly enhanced cytotoxicity of VBL (vinblastine) in P-gp-overexpressed human multidrug-resistant K562/ADM (adriamycin) and KBV cells, but had no such effect on the parent K562 and KB cells. The MDR-modulating function of 1416 was further confirmed by increasing intracellular Rh123 (rhodanmine123) content in MDR cells. Human K562/ADM xenograft-nude mice model verified that 1416 potentiates the antitumour activity of VBL in vivo. RT-PCR (reverse transcriptase-PCR) and FACS analysis demonstrated that the expression of MDR1/P-gp was not affected by 1416 treatment. All these observations suggest that 1416 could be a promising agent for overcoming MDR in cancer chemotherapy.


2009 ◽  
Vol 28 (4) ◽  
pp. 391-403 ◽  
Author(s):  
L. Gibalová ◽  
J. Sedlák ◽  
M. Labudová ◽  
M. Barančík ◽  
A. Reháková ◽  
...  

2002 ◽  
Vol 50 (5) ◽  
pp. 731-734 ◽  
Author(s):  
Enrico Crivellato ◽  
Luigi Candussio ◽  
Anna M. Rosati ◽  
Fiora Bartoli-Klugmann ◽  
Franco Mallardi ◽  
...  

Several fluorescent probes have been used in functional studies to analyze drug transport in multidrug-resistant cells by fluorescent microscopy. Because many of these molecules have some drawbacks, such as toxicity, nonspecific background, or accumulation in mitochondria, new fluorescent compounds have been proposed as more useful tools. Among these substances, Bodipy-FL-Verapamil, a fluorescent conjugate of the drug efflux blocker verapamil, has been used to study P-glycoprotein activity in different cell types. In this study we tested by fluorescent microscopy the accumulation of Bodipy-FL- Verapamil in cell lines that overexpress either P-glycoprotein (P-gp) or multidrug resistance-related protein 1 (MRP1). Expression of P-gp and MRP1 was evaluated at the mRNA level by RT-PCR technique and at the protein level by flow cytometric analysis using C219 and MRP-m6 monoclonal antibodies. Results indicate that Bodipy-FL-Verapamil is actually a substrate for both proteins. As a consequence, any conclusion about P-gp activity obtained by the use of Bodipy-FL-Verapamil as fluorescent tracer should be interpreted with caution.


1994 ◽  
Vol 107 (12) ◽  
pp. 3281-3290
Author(s):  
A. Sardini ◽  
G.M. Mintenig ◽  
M.A. Valverde ◽  
F.V. Sepulveda ◽  
D.R. Gill ◽  
...  

P-glycoprotein (P-gp), the product of the human multidrug resistance (MDR1) gene, confers multidrug resistance on cells by acting as an ATP-dependent drug transporter. A method using confocal microscopy was developed to measure the transport activity of P-gp from the rate of movement of doxorubicin, a fluorescent substrate of P-gp, across the membrane of a single cell. Recent work has shown that expression of P-gp enhances the activation of chloride channels in response to cell swelling, suggesting that membrane stretch might switch P-gp from a drug-transporting mode to a mode in which it activates chloride channels. In agreement with this idea, we find that cell swelling inhibits drug efflux in cells expressing P-gp but is without effect on the slower background efflux in cells not expressing P-gp and in cells transiently transfected with a mutated MDR1 in which the ATP hydrolysis sites had been inactivated. The identification of a novel means for inhibiting P-gp-mediated drug transport may have implications for the reversal of multidrug resistance during chemotherapy.


1987 ◽  
Vol 7 (2) ◽  
pp. 718-724
Author(s):  
K L Deuchars ◽  
R P Du ◽  
M Naik ◽  
D Evernden-Porelle ◽  
N Kartner ◽  
...  

The overexpression of a plasma membrane glycoprotein, P-glycoprotein, is strongly correlated with the expression of multidrug resistance. This phenotype (frequently observed in cell lines selected for resistance to a single drug) is characterized by cross resistance to many drugs, some of which are used in cancer chemotherapy. In the present study we showed that DNA-mediated transformants of mouse LTA cells with DNA from multidrug-resistant hamster cells acquired the multidrug resistance phenotype, that the transformants contained hamster P-glycoprotein DNA sequences, that these sequences were amplified whereas the recipient mouse P-glycoprotein sequences remained at wild-type levels, and that the overexpressed P-glycoprotein in these cells was of hamster origin. Furthermore, we showed that the hamster P-glycoprotein sequences were transfected independently of a group of genes that were originally coamplified and linked within a 1-megabase-pair region in the donor hamster genome. These data indicate that the high expression of P-glycoprotein is the only alteration required to mediate multidrug resistance.


2003 ◽  
Vol 47 (8) ◽  
pp. 2393-2396 ◽  
Author(s):  
Michelle Ciach ◽  
Kathleen Zong ◽  
Kevin C. Kain ◽  
Ian Crandall

ABSTRACT Quinoline resistance in malaria is frequently compared with P-glycoprotein-mediated multidrug resistance (mdr) in mammalian cells. We have previously reported that nonylphenolethoxylates, such as NP30, are potential Plasmodium falciparum P-glycoprotein substrates and drug efflux inhibitors. We used in vitro assays to compare the ability of verapamil and NP30 to sensitize two parasite isolates to four quinolines: chloroquine (CQ), mefloquine (MF), quinine (QN), and quinidine (QD). NP30 was able to sensitize (reversal, >80%) P. falciparum to MF, QN, QD, and, to a lesser extent, CQ. The presence of 2 μM verapamil had no effect on mefloquine resistance; however, the presence of verapamil modulated the activities of QN and QD in a manner parallel to that observed for CQ. Genetic analysis of putative quinoline resistance genes did not suggest an association between known point mutations in pfcrt and pfmdr1 and NP30 sensitization activity. We conclude that the sensitization action of NP30 is distinct both phenotypically and genotypically from that of verapamil.


2016 ◽  
Vol 4 (36) ◽  
pp. 6043-6051 ◽  
Author(s):  
Junling Wang ◽  
Ran Wang ◽  
Fangrong Zhang ◽  
Yajun Yin ◽  
Leixia Mei ◽  
...  

A targeted drug delivery system based on carbon nanohorns for targeting P-glycoprotein and delivering etoposide into cells to overcome multidrug resistance.


2004 ◽  
Vol 76 (5) ◽  
pp. 997-1005 ◽  
Author(s):  
G. F. Ecker ◽  
Peter Chiba

Inhibition of drug efflux pumps such as P-glycoprotein represents a versatile approach for overcoming multidrug resistance in tumor therapy. Although numerous compounds have been identified as being able to inhibit P-glycoprotein, only little is known on the molecular basis of the drug–protein interaction. This article gives an overview of the different pharmacoinformatic approaches we used to develop new propafenone-type modulators of P-glycoprotein. These include 2D-and 3D-QSAR studies, artificial neural networks, and photoaffinity labeling studies.


1987 ◽  
Vol 5 (9) ◽  
pp. 1452-1460 ◽  
Author(s):  
J H Gerlach ◽  
D R Bell ◽  
C Karakousis ◽  
H K Slocum ◽  
N Kartner ◽  
...  

Overexpression of an immunologically conserved, cell-surface glycoprotein (P-glycoprotein) is consistently associated with multidrug resistance in cell lines in vitro. A preliminary survey of specimens from 12 solid tumor types in our laboratories indicates significant overexpression of P-glycoprotein in some sarcomas. When tested by immunoblotting with monoclonal antibodies directed against P-glycoprotein; tumors from six of 25 sarcoma patients displayed elevated levels of P-glycoprotein. Three of the sarcoma patients exhibiting P-glycoprotein had not previously been exposed to chemotherapy, implying that overexpression of this marker and possible concomitant multidrug resistance may not depend only on selection during prior drug treatments. The P-glycoprotein overexpression in the sarcoma specimens is evidence for the presence of multidrug resistant cells in these tumors; thus, our data suggest that this mode of resistance may have clinical significance in sarcoma patients.


Sign in / Sign up

Export Citation Format

Share Document