A do-it-yourself approach to achieving a flexible pressure sensor using daily available materials

Author(s):  
Zaihua Duan ◽  
Yadong Jiang ◽  
Qi Huang ◽  
Zhen Yuan ◽  
Qiuni Zhao ◽  
...  

The pressure sensing performance of flexible pressure sensor has been developed rapidly in recent years, but it still suffers from the disadvantages of complex manufacturing process and high cost. Here,...

2006 ◽  
Vol 920 ◽  
Author(s):  
Zhang Hui ◽  
Tao Xiao Ming ◽  
Yu Tong Xi ◽  
Li Xin Sheng

AbstractThis paper presents an approach for decoding the pressure information exerted over a piece of fabric by means of resistive sensing. The proposed sensor includes a distributed resistive grids constructed by two systems of orthogonally contacted electrical conductive yarns, with no external sensing element to be attached on the fabric. Since the conductive yarns serve as the sensing and wiring elements simultaneously, this design simplifies the fabrication process, reduces the cost and makes the production of large area flexible pressure sensor possible. The location of the pressure applied on the fabric can be identified by detecting the position where the change of the resistances occurs between two embroidered yarns. Meanwhile, the magnitude of the pressure can be acquired by measuring the variations of the resistance. In order to eliminate the “crosstalk” effect between adjoining fibers, the yarns were separately wired on the fabric surface.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 824
Author(s):  
Byunggeon Park ◽  
Young Jung ◽  
Jong Soo Ko ◽  
Jinhyoung Park ◽  
Hanchul Cho

Highly flexible and compressible porous polyurethane (PU) structures have effectively been applied in capacitive pressure sensors because of the good elastic properties of the PU structures. However, PU porous structure-based pressure sensors have been limited in practical applications owing to their low durability during pressure cycling. Herein, we report a flexible pressure sensor based on a three-dimensional porous structure with notable durability at a compressive pressure of 500 kPa facilitated by the use of a shape memory polymer (SMP). The SMP porous structure was fabricated using a sugar templating process and capillary effect. The use of the SMP resulted in the maintenance of the sensing performance for 100 cycles at 500 kPa; the SMP can restore its original shape within 30 s of heating at 80 °C. The pressure sensor based on the SMP exhibited a higher sensitivity of 0.0223 kPa−1 than a typical PU-based sensor and displayed excellent sensing performance in terms of stability, response time, and hysteresis. Additionally, the proposed sensor was used to detect shoe insole pressures in real time and exhibited remarkable durability and motion differentiation.


2021 ◽  
Vol 1 ◽  
Author(s):  
Andrei Alaferdov ◽  
Ilya Vilkov ◽  
Boris Kaverin ◽  
Anatoly Ob´edkov ◽  
Stanislav Moshkalev

Herein, we demonstrate the prototype of a combined flexible pressure sensor based on ultrathin multiwall carbon nanotubes (MWCNTs) and graphite nanobelts (GNBs) films embedded in polydimethylsiloxane (PDMS). A simple and scalable modified Langmuir–Blodgett method was used for deposition of both MWCNT and GNB films. The use of two types of carbon nanostructures (nanotubes and GNBs) with distinctly different mechanical properties allowed obtaining enhanced dynamic range for pressure sensing. Short response time, good sensibility and flexibility, and low power consumption for enhanced pressure range make possible applications of the sensor for healthcare monitoring and as a component in the human–machine interfaces application.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Jia-lin Yao ◽  
Xing Yang ◽  
Na Shao ◽  
Hui Luo ◽  
Ting Zhang ◽  
...  

Excellent flexibility, high sensitivity, and low consumption are essential characteristics in flexible microtube pressure sensing occasion, for example, implantable medical devices, industrial pipeline, and microfluidic chip. This paper reports a flexible, highly sensitive, and ultrathin piezoresistive pressure sensor for fluid pressure sensing, whose sensing element is micropatterned films with conductive carbon nanotube layer. The flexible pressure sensor, the thickness of which is 40 ± 10 μm, could be economically fabricated by using biocompatible polydimethylsiloxane (PDMS). Experimental results show that the flexible pressure sensor has high sensitivity (0.047 kPa−1in gas sensing and 5.6 × 10−3 kPa−1in liquid sensing) and low consumption (<180 μW), and the sensor could be used to measure the pressure in curved microtubes.


2013 ◽  
Vol 647 ◽  
pp. 315-320 ◽  
Author(s):  
Pradeep Kumar Rathore ◽  
Brishbhan Singh Panwar

This paper reports on the design and optimization of current mirror MOSFET embedded pressure sensor. A current mirror circuit with an output current of 1 mA integrated with a pressure sensing n-channel MOSFET has been designed using standard 5 µm CMOS technology. The channel region of the pressure sensing MOSFET forms the flexible diaphragm as well as the strain sensing element. The piezoresistive effect in MOSFET has been exploited for the calculation of strain induced carrier mobility variation. The output transistor of the current mirror forms the active pressure sensing MOSFET which produces a change in its drain current as a result of altered channel mobility under externally applied pressure. COMSOL Multiphysics is utilized for the simulation of pressure sensing structure and Tspice is employed to evaluate the characteristics of the current mirror pressure sensing circuit. Simulation results show that the pressure sensor has a sensitivity of 10.01 mV/MPa. The sensing structure has been optimized through simulation for enhancing the sensor sensitivity to 276.65 mV/MPa. These CMOS-MEMS based pressure sensors integrated with signal processing circuitry on the same chip can be used for healthcare and biomedical applications.


2021 ◽  
pp. 100889
Author(s):  
Ran Li ◽  
Xiaohan Tian ◽  
Min Wei ◽  
Aijun Dong ◽  
Xi Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document