Oxidative signalling in seed germination and early seedling growth: an emerging role for ROS trafficking and inter-organelle communication

2021 ◽  
Vol 478 (10) ◽  
pp. 1977-1984
Author(s):  
Christophe Bailly ◽  
Livia Merendino

Underground early development of higher plants includes two distinct developmental processes, seed germination and then skotomorphogenesis, a mechanism which favours elongation of the hypocotyl and helps the seedling to find light. Interestingly, both processes, which are regulated by plant hormones, have been shown to depend on reactive oxygen species metabolism and to be related to mitochondrial retrograde signalling. Here we review the recent outcomes in this field of research and highlight the emerging role of ROS communication between organelles and cell compartments. We point out the role of mitochondria as an environmental and developmental sensor organelle that regulates ROS homeostasis and downstream events and we propose future directions of research that should help better understanding the roles of ROS in germination and seedling emergence.

2011 ◽  
Vol 30 (10) ◽  
pp. 1969-1979 ◽  
Author(s):  
Adam Colville ◽  
Reem Alhattab ◽  
Ming Hu ◽  
Hélène Labbé ◽  
Tim Xing ◽  
...  

2020 ◽  
Vol 48 (2) ◽  
pp. 938-953
Author(s):  
Taieb TOUNEKTI ◽  
Mosbah MAHDHI ◽  
Zarraq AL-FAIFI ◽  
Habib KHEMIRA

Seeds of three sorghum (Sorghum bicolor (L.) Moench.) varieties from Southwest Saudi Arabia were used to investigate the potential of osmopriming with polyethylene glycol (PEG 8000) to improve germination performance, seed reserve utilization and early seedling growth and drought stress tolerance. The primed (PS) and unprimed (UPS) seeds of the three sorghum varieties were germinated for 8 days under increasing PEG-induced osmotic stress. The treatments were arranged in a completely randomized design, in a factorial arrangement, with three sorghum cultivars (‘Zaydia’, ‘Shahbi’ and ‘Ahmar’) and four osmotic potentials (0.0; -0.4; -0.8 and -1.2 MPa) with four replicates of 50 seeds each. The results showed that drought stress affected seed germination and seedling emergence and establishment, but increased the activity of the antioxidant enzyme catalase (CAT). The strongest inhibition of germination and growth occurred at the highest PEG concentration and a significant difference was noticeable between the studied varieties. We confirmed also that seed osmopriming improved seed germination performance, seedling growth and enhanced the CAT activities while reduced malonyldialdehyde (MDA) accumulation and electrolyte leakage (EL) in the drought-stressed seedlings. Seed priming have enhanced also the α-amylase and total proteases activities in all varieties. The largest increase of these hydrolysing enzymes was shown in ‘Ahmar’. Furthermore, the PEG priming lead to improvement of the weight of utilized (mobilized) seed reserve (WUSR), seed reserve depletion percentage (SRDP) and total seedling dry weight (SLDW) of sorghum seedlings under water stress conditions. Still, the highest values or all three parameters were found in the ‘Ahmar’ variety. Under increasing drought stress conditions, ‘Ahmar’ showed the highest yield stability index (YSI) and the least EL and MDA contents in comparison to the other two varieties during the seedling establishment stage. Therefore, the former variety can tolerate better a rigorous water stress condition. ‘Zaydia’ appears to be the most vulnerable to drought stress. Thus, the use of species or varieties with eminent seed metabolic quality is an advantageous trait in drought-prone regions.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
Y.H. WANG ◽  
Y.L. MA ◽  
G.J. FENG ◽  
H.H. LI

ABSTRACT: Large crabgrass is one of the worst exotic weed in tropical, subtropical, and temperate regions of the world. In this study, the abiotic factors affecting seed germination and early seedling emergence of large crabgrass were investigated under laboratory conditions. The optimum temperatures of germination occurred at the range from 25 to 35 oC under 12 h light/12 h dark condition. Some seeds could germinate in the dark, but light exposure significantly stimulated the germination. Large crabgrass seed was tolerant to salinity level range of 0 to 160 and low water potential (11% germination at -0.8 MPa). Medium pH had no significant effect on seed germination and more than 90% seeds germination was obtained over a broad pH range from 4.0 to 10.0. Seed germination was significantly influenced by heat-shock and completely inhibited at 140 oC for 5 min. The greatest seedling emergence rate was 96% when seeds were planted at a soil depth of 1 cm. Knowledge of germination biology obtained from this study will be useful in the development of the integrated weed management strategies for this species, and to avoid its establishment as a troublesome weed in economically important cropping regions.


Weed Science ◽  
1998 ◽  
Vol 46 (3) ◽  
pp. 351-357 ◽  
Author(s):  
Javier F. Botto ◽  
Ana L. Scopel ◽  
Carlos L. Ballaré ◽  
Rodolfo A. Sánchez

The purpose of this study was to investigate the role of sunlight perceived by weed seeds during and after soil cultivation with moldboard and chisel plows on induction of seed germination. Daytime cultivation with a moldboard plow increased weed seedling emergence by as much as 200% above the levels recorded following nighttime cultivation; however, the magnitude of this promotion varied depending on season and field history, and occasionally it was nil. In contrast, when a chisel plow was used in primary tillage, no differences in seedling emergence were observed between daytime and nighttime cultivation. The absolute germination level in plots cultivated with a chisel plow was at least 200% greater than in plots cultivated with a moldboard plow. This observation suggests that microenvironmental factors other than light played an important role in promoting seed germination in chisel-plowed plots. Covering moldboard-plowed plots with opaque plastic immediately after cultivation did not reduce weed seedling emergence compared to plots that were either covered with transparent film or left uncovered. Our results suggest that only the light stimulus perceived by the seeds during soil cultivation is effective in triggering germination.


2011 ◽  
Vol 26 (4) ◽  
pp. 269-275 ◽  
Author(s):  
James M. O'Connell ◽  
Hilary A. Sandler ◽  
Lynn S. Adler ◽  
Frank L. Caruso

AbstractFlooding is an inexpensive cultural practice used for pest management in Massachusetts cranberry (Vaccinium macrocarponAit.) production. This project examined the use of short-term floods (<72 h) for dodder (Cuscuta gronoviiWilld.) management under controlled conditions. Using incubators, seed was submerged in water for 0, 24 and 48 h at 10, 15 and 20°C (simulating spring water temperatures) and 0, 12, 24, 36 and 48 h at 15, 20 and 25°C (simulating summer water temperatures). Two 1-year controlled studies (field and greenhouse) evaluated three flood durations (0, 24 and 48 h) and four flood initiations (1, 2, 3 and 4 weeks after early seedling emergence (AEE)). Treated seeds were planted to cranberry vines and to Petri dishes; percent germination, degree of dodder attachment and dodder biomass data were collected. Treatments had limited effect on seed germination. Flooding 4 weeks AEE resulted in the lowest mean attachment ratings and dodder stem biomass on cranberry. This preliminary work provides evidence that flooding may retard dodder stem growth rather than reducing seed germination and that floods initiated after some time has elapsed after early emergence may be more effective than those initiated closer to the time of seedling emergence. More information is needed to thoroughly understand the processes involved; however, small projects such as this can provide interim guidelines that growers can immediately consider when deciding on a dodder management program.


2021 ◽  
Vol 12 ◽  
Author(s):  
Feng Yang ◽  
Kunqin Xiao ◽  
Hongyu Pan ◽  
Jinliang Liu

Higher plants and some algae convert the absorbed light into chemical energy through one of the most important organelles, chloroplast, for photosynthesis and store it in the form of organic compounds to supply their life activities. However, more and more studies have shown that the role of chloroplasts is more than a factory for photosynthesis. In the process of light conversion to chemical energy, any damage to the components of chloroplast may affect the photosynthesis efficiency and promote the production of by-products, reactive oxygen species, that are mainly produced in the chloroplasts. Substantial evidence show that chloroplasts are also involved in the battle of plants and microbes. Chloroplasts are important in integrating a variety of external environmental stimuli and regulate plant immune responses by transmitting signals to the nucleus and other cell compartments through retrograde signaling pathways. Besides, chloroplasts can also regulate the biosynthesis and signal transduction of phytohormones, including salicylic acid and jasmonic acid, to affect the interaction between the plants and microbes. Since chloroplasts play such an important role in plant immunity, correspondingly, chloroplasts have become the target of pathogens. Different microbial pathogens target the chloroplast and affect its functions to promote their colonization in the host plants.


2020 ◽  
Vol 151 ◽  
pp. 124-131 ◽  
Author(s):  
Golam Jalal Ahammed ◽  
Saikat Gantait ◽  
Monisha Mitra ◽  
Youxin Yang ◽  
Xin Li

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1363
Author(s):  
Mingqing Ma ◽  
Weijian Cen ◽  
Rongbai Li ◽  
Shaokui Wang ◽  
Jijing Luo

As sessile organisms, flooding/submergence is one of the major abiotic stresses for higher plants, with deleterious effects on their growth and survival. Therefore, flooding/submergence is a large challenge for agriculture in lowland areas worldwide. Long-term flooding/submergence can cause severe hypoxia stress to crop plants and can result in substantial yield loss. Rice has evolved distinct adaptive strategies in response to low oxygen (O2) stress caused by flooding/submergence circumstances. Recently, direct seeding practice has been increasing in popularity due to its advantages of reducing cultivation cost and labor. However, establishment and growth of the seedlings from seed germination under the submergence condition are large obstacles for rice in direct seeding practice. The physiological and molecular regulatory mechanisms underlying tolerant and sensitive phenotypes in rice have been extensively investigated. Here, this review focuses on the progress of recent advances in the studies of the molecular mechanisms and metabolic adaptions underlying anaerobic germination (AG) and coleoptile elongation. Further, we highlight the prospect of introducing quantitative trait loci (QTL) for AG into rice mega varieties to ensure the compatibility of flooding/submergence tolerance traits and yield stability, thereby advancing the direct seeding practice and facilitating future breeding improvement.


Author(s):  
Benjamin F. Trump ◽  
Irene K. Berezesky ◽  
Raymond T. Jones

The role of electron microscopy and associated techniques is assured in diagnostic pathology. At the present time, most of the progress has been made on tissues examined by transmission electron microscopy (TEM) and correlated with light microscopy (LM) and by cytochemistry using both plastic and paraffin-embedded materials. As mentioned elsewhere in this symposium, this has revolutionized many fields of pathology including diagnostic, anatomic and clinical pathology. It began with the kidney; however, it has now been extended to most other organ systems and to tumor diagnosis in general. The results of the past few years tend to indicate the future directions and needs of this expanding field. Now, in addition to routine EM, pathologists have access to the many newly developed methods and instruments mentioned below which should aid considerably not only in diagnostic pathology but in investigative pathology as well.


Author(s):  
Ann LeFurgey ◽  
Peter Ingram ◽  
J.J. Blum ◽  
M.C. Carney ◽  
L.A. Hawkey ◽  
...  

Subcellular compartments commonly identified and analyzed by high resolution electron probe x-ray microanalysis (EPXMA) include mitochondria, cytoplasm and endoplasmic or sarcoplasmic reticulum. These organelles and cell regions are of primary importance in regulation of cell ionic homeostasis. Correlative structural-functional studies, based on the static probe method of EPXMA combined with biochemical and electrophysiological techniques, have focused on the role of these organelles, for example, in maintaining cell calcium homeostasis or in control of excitation-contraction coupling. New methods of real time quantitative x-ray imaging permit simultaneous examination of multiple cell compartments, especially those areas for which both membrane transport properties and element content are less well defined, e.g. nuclei including euchromatin and heterochromatin, lysosomes, mucous granules, storage vacuoles, microvilli. Investigations currently in progress have examined the role of Zn-containing polyphosphate vacuoles in the metabolism of Leishmania major, the distribution of Na, K, S and other elements during anoxia in kidney cell nuclel and lysosomes; the content and distribution of S and Ca in mucous granules of cystic fibrosis (CF) nasal epithelia; the uptake of cationic probes by mltochondria in cultured heart ceils; and the junctional sarcoplasmic retlculum (JSR) in frog skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document