P/CAF rescues the Bhlhe40-mediated repression of MyoD transactivation

2009 ◽  
Vol 422 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Sheng P. Hsiao ◽  
Kai M. Huang ◽  
Hsin Y. Chang ◽  
Shen L. Chen

Previously, we found that MRFs (myogenic regulatory factors) regulated the expression of PGC-1α (peroxisome-proliferator-activated receptor γ co-activator 1α) by targeting a short region, from nt −49 to +2 adjacent to the transcription initiation site, that contained two E-boxes. However, only the E2-box had significant affinity for MRFs, and the E1-box was predicted to be the target of Bhlhe40 (basic helix-loop-helix family, member e40, also known as Stra13, Bhlhb2, DEC1 and Sharp2), a transcriptional repressor implicated in the regulation of several physiological processes. In the present study, by using EMSA (electrophoresis mobility-shift assay), we confirmed that Bhlhe40 targeted the E1-box and formed a complex with the basic helix-loop-helix transcription factor MyoD (myogenic differentiation factor D) on the PGC-1α core promoter. We demonstrate that Bhlhe40 binds to the promoters of PGC-1α and myogenic genes in vivo and that Bhlhe40 represses the MyoD-mediated transactivation of these promoters. Furthermore, we found that this repression could be relieved by P/CAF (p300/CBP-associated factor) in a dose-dependent manner, but not by CBP [CREB (cAMP-response-element-binding protein)-binding protein]. Bhlhe40 interacted with P/CAF and this interaction disrupted the interaction between P/CAF and MyoD. These results suggest that Bhlhe40 functions as a repressor of MyoD by binding to adjacent E-boxes and sequestering P/CAF from MyoD.

2003 ◽  
Vol 376 (3) ◽  
pp. 707-715 ◽  
Author(s):  
Eleonora MARSICH ◽  
Amedeo VETERE ◽  
Matteo DI PIAZZA ◽  
Gianluca TELL ◽  
Sergio PAOLETTI

PAX6 is a transcription factor that plays an important role during pancreatic morphogenesis. The aim of the present study is to identify the upstream activator(s) of the PAX6 gene possibly involved in the early stages of pancreatic differentiation. Recently, individual elements regulating PAX6 gene activity in the pancreas have been identified in a 1100 bp Spe/HincII fragment 4.6 kb upstream of exon 0. Preliminary sequence analysis of this region revealed some potential DNA-binding sites (E boxes) specific for the binding of basic helix–loop–helix transcription factors. By using electrophoretic mobility shift assays, we demonstrated that both nuclear protein extracts from insulin-secreting RINm5F cells and in vitro-translated NeuroD/BETA2 can bind specifically to these E boxes. Furthermore, by transient transfection experiments we demonstrated that the expression of basic helix–loop–helix transcription factor NeuroD/BETA2 can induce activation of the PAX6 promoter in the NIH-3T3 cell line. Thus we show that NeuroD/BETA2 is involved in the activation of the expression of PAX6 through E boxes in the PAX6 promoter localized in a 1.1 kb sequence within the 4.6 kb untranslated region upstream of exon 0.


2000 ◽  
Vol 74 (5) ◽  
pp. 2459-2465 ◽  
Author(s):  
Pei-Fen Su ◽  
Shu-Yuan Chiang ◽  
Cheng-Wen Wu ◽  
Felicia Y.-H. Wu

ABSTRACT Adeno-associated virus type 2 (AAV) is known to inhibit the promoter activities of several oncogenes and viral genes, including the human papillomavirus type 16 (HPV-16) E6 and E7 transforming genes. However, the target elements of AAV on the long control region (LCR) upstream of E6 and E7 oncogenes are elusive. A chloramphenicol acetyltransferase assay was performed to study the effect of AAV on the transcription activity of the HPV-16 LCR in SiHa (HPV-positive) and C-33A (HPV-negative) cells. The results reveal that (i) AAV inhibited HPV-16 LCR activity in a dose-dependent manner, (ii) AAV-mediated inhibition did not require the HPV gene products, and (iii) the AAV replication gene product Rep78 was involved in the inhibition. Deletion mutation analyses of the HPV-16 LCR showed that regulatory elements outside the core promoter region of the LCR may not be direct targets of AAV-mediated inhibition. Further study with the electrophoretic mobility shift assay demonstrated that Rep78 interfered with the binding of TATA-binding protein (TBP) to the TATA box of the p97 core promoter more significantly than it disrupted the preformed TBP-TATA complex. These data thus suggest that Rep78 may inhibit transcription initiation of the HPV-16 LCR by disrupting the interaction between TBP and the TATA box of the p97 core promoter.


1999 ◽  
Vol 112 (21) ◽  
pp. 3691-3702 ◽  
Author(s):  
W.L. Severt ◽  
T.U. Biber ◽  
X. Wu ◽  
N.B. Hecht ◽  
R.J. DeLorenzo ◽  
...  

Ribonucleoprotein particles (RNPs) are thought to be key players in somato-dendritic sorting of mRNAs in CNS neurons and are implicated in activity-directed neuronal remodeling. Here, we use reporter constructs and gel mobility shift assays to show that the testis brain RNA-binding protein (TB-RBP) associates with mRNPs in a sequence (Y element) dependent manner. Using antisense oligonucleotides (anti-ODN), we demonstrate that blocking the TB-RBP Y element binding site disrupts and mis-localizes mRNPs containing (alpha)-calmodulin dependent kinase II (alpha)-CAMKII) and ligatin mRNAs. In addition, we show that suppression of kinesin heavy chain motor protein alters only the localization of (alpha)-CAMKII mRNA. Thus, differential sorting of mRNAs involves multiple mRNPs and selective motor proteins permitting localized mRNAs to utilize common mechanisms for shared steps.


2003 ◽  
Vol 370 (3) ◽  
pp. 771-784 ◽  
Author(s):  
Cristina PÉREZ-GÓMEZ ◽  
José M. MATÉS ◽  
Pedro M. GÓMEZ-FABRE ◽  
Antonio del CASTILLO-OLIVARES ◽  
Francisco J. ALONSO ◽  
...  

In mammals, glutaminase (GA) is expressed in most tissues, but the regulation of organ-specific expression is largely unknown. Therefore, as an essential step towards studying the regulation of GA expression, the human liver-type GA (hLGA) gene has been characterized. LGA genomic sequences were isolated using the genome walking technique. Analysis and comparison of these sequences with two LGA cDNA clones and the Human Genome Project database, allowed the determination of the genomic organization of the LGA gene. The gene has 18 exons and is approx. 18kb long. All exon/intron junction sequences conform to the GT/AG rule. Progressive deletion analysis of LGA promoter—luciferase constructs indicated that the core promoter is located between nt −141 and +410, with several potential regulatory elements: CAAT, GC, TATA-like, Ras-responsive element binding protein and specificity protein 1 (Sp1) sites. The minimal promoter was mapped within +107 and +410, where only an Sp1 binding site is present. Mutation experiments suggested that two CAAT recognition elements near the transcription-initiation site (-138 and −87), play a crucial role for optimal promoter activity. Electrophoretic mobility-shift assays confirmed the importance of CAAT- and TATA-like boxes to enhance basal transcription, and demonstrated that HNF-1 motif is a significant distal element for transcriptional regulation of the hLGA gene.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2042 ◽  
Author(s):  
Yae Rim Choi ◽  
Jaewon Shim ◽  
Min Jung Kim

Soy isoflavones are popular ingredients with anti-adipogenic and anti-lipogenic properties. The anti-adipogenic and anti-lipogenic properties of genistein are well-known, but those of genistin and glycitein remain unknown, and those of daidzein are characterized by contrasting data. Therefore, the purpose of our study was to investigate the effects of daidzein, glycitein, genistein, and genistin on adipogenesis and lipogenesis in 3T3-L1 cells. Proliferation of 3T3-L1 preadipocytes was unaffected by genistin and glycitein, but it was affected by 50 and 100 µM genistein and 100 µM daidzein for 48 h. Among the four isoflavones, only 50 and 100 µM genistin and genistein markedly suppressed lipid accumulation during adipogenesis in 3T3-L1 cells through a similar signaling pathway in a dose-dependent manner. Genistin and genistein suppress adipocyte-specific proteins and genes, such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), and adipocyte binding protein 2 (aP2)/fatty acid-binding protein 4 (FABP4), and lipogenic enzymes such as ATP citrate lyase (ACL), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FAS). Both isoflavones also activate AMP-activated protein kinase α (AMPKα), an essential factor in adipocyte differentiation, and inhibited sterol regulatory element-binding transcription factor 1c (SREBP-1c). These results indicate that genistin is a potent anti-adipogenic and anti-lipogenic agent.


2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Meng-Lun Hsieh ◽  
Christopher M. Waters ◽  
Deborah M. Hinton

ABSTRACT Vibrio cholerae biofilm biogenesis, which is important for survival, dissemination, and persistence, requires multiple genes in the Vibrio polysaccharides (vps) operons I and II as well as the cluster of ribomatrix (rbm) genes. Transcriptional control of these genes is a complex process that requires several activators/repressors and the ubiquitous signaling molecule, cyclic di-GMP (c-di-GMP). Previously, we demonstrated that VpsR directly activates RNA polymerase containing σ70 (σ70-RNAP) at the vpsL promoter (PvpsL), which precedes the vps-II operon, in a c-di-GMP-dependent manner by stimulating formation of the transcriptionally active, open complex. Using in vitro transcription, electrophoretic mobility shift assays, and DNase I footprinting, we show here that VpsR also directly activates σ70-RNAP transcription from other promoters within the biofilm formation cluster, including PvpsU, at the beginning of the vps-I operon, PrbmA, at the start of the rbm cluster, and PrbmF, which lies upstream of the divergent rbmF and rbmE genes. In this capacity, we find that VpsR is able to behave both as a class II activator, which functions immediately adjacent/overlapping the core promoter sequence (PvpsL and PvpsU), and as a class I activator, which functions farther upstream (PrbmA and PrbmF). Because these promoters vary in VpsR-DNA binding affinity in the absence and presence of c-di-GMP, we speculate that VpsR’s mechanism of activation is dependent on both the concentration of VpsR and the level of c-di-GMP to increase transcription, resulting in finely tuned regulation. IMPORTANCE Vibrio cholerae, the bacterial pathogen that is responsible for the disease cholera, uses biofilms to aid in survival, dissemination, and persistence. VpsR, which directly senses the second messenger c-di-GMP, is a major regulator of this process. Together with c-di-GMP, VpsR directly activates transcription by RNA polymerase containing σ70 from the vpsL biofilm biogenesis promoter. Using biochemical methods, we demonstrate for the first time that VpsR/c-di-GMP directly activates σ70-RNA polymerase at the first genes of the vps and ribomatrix operons. In this regard, it functions as either a class I or class II activator. Our results broaden the mechanism of c-di-GMP-dependent transcription activation and the specific role of VpsR in biofilm formation.


1994 ◽  
Vol 14 (8) ◽  
pp. 5259-5267
Author(s):  
S S Rao ◽  
C Chu ◽  
D S Kohtz

Activation of muscle gene transcription in differentiating skeletal myoblasts requires their withdrawal from the cell cycle. The effects of ectopic cyclin expression on activation of muscle gene transcription by myogenic basic helix-loop-helix (bHLH) regulators were investigated. Ectopic expression of cyclin D1, but not cyclins A, B1, B2, C, D3, and E, inhibited transcriptional activation of muscle gene reporter constructs by myogenic bHLH regulators in a dose-dependent manner. Ectopic expression of cyclin D1 inhibited the activity of a myogenic bHLH regulator mutant lacking the basic region protein kinase C site, indicating that phosphorylation of this site is not relevant to the mechanism of inhibition. Analysis of cyclin D1 mutants revealed that the C-terminal acidic region was required for inhibition of myogenic bHLH regulator activity, whereas an intact N-terminal pRb binding motif was not essential. Together, these results implicate expression of cyclin D1 as a central determinant of a putatively novel mechanism that links positive control of cell cycle progression to negative regulation of genes expressed in differentiated myocytes.


Development ◽  
1998 ◽  
Vol 125 (23) ◽  
pp. 4821-4833 ◽  
Author(s):  
N.L. Brown ◽  
S. Kanekar ◽  
M.L. Vetter ◽  
P.K. Tucker ◽  
D.L. Gemza ◽  
...  

We have identified Math5, a mouse basic helix-loop-helix (bHLH) gene that is closely related to Drosophila atonal and Xenopus Xath5 and is largely restricted to the developing eye. Math5 retinal expression precedes differentiation of the first neurons and persists within progenitor cells until after birth. To position Math5 in a hierarchy of retinal development, we compared Math5 and Hes1 expression in wild-type and Pax6-deficient (Sey) embryos. Math5 expression is downregulated in Sey/+ eyes and abolished in Sey/Sey eye rudiments, whereas the bHLH gene Hes1 is upregulated in a similar dose-dependent manner. These results link Pax6 to the process of retinal neurogenesis and provide the first molecular correlate for the dosage-sensitivity of the Pax6 phenotype. During retinogenesis, Math5 is expressed significantly before NeuroD, Ngn2 or Mash1. To test whether these bHLH genes influence the fates of distinct classes of retinal neurons, we ectopically expressed Math5 and Mash1 in Xenopus retinal progenitors. Unexpectedly, lipofection of either mouse gene into the frog retina caused an increase in differentiated bipolar cells. Directed expression of Math5, but not Xath5, in Xenopus blastomeres produced an expanded retinal phenotype. We propose that Math5 acts as a proneural gene, but has properties different from its most closely related vertebrate family member, Xath5.


Sign in / Sign up

Export Citation Format

Share Document