Human platelets express and are activated by galectin-8

2010 ◽  
Vol 432 (3) ◽  
pp. 535-547 ◽  
Author(s):  
Maria Albertina Romaniuk ◽  
Maria Virginia Tribulatti ◽  
Valentina Cattaneo ◽  
Maria Jose Lapponi ◽  
Felisa Concepcion Molinas ◽  
...  

Gals (galectins) are proteins with glycan affinity that are emerging as mediators of atherosclerosis. Despite the similarities in structure and sequence, different Gals exert distinct effects on their target cells. We have shown that Gal-1 triggers platelet activation, suggesting a role for Gals in thrombus formation. Since Gal-8 is expressed upon endothelial activation and also contributes to inflammation, to understand further the role of these lectins in haemostasis, we evaluated the effect of Gal-8 on human platelets. Gal-8 bound specific glycans in the platelet membrane and triggered spreading, calcium mobilization and fibrinogen binding. It also promoted aggregation, thromboxane generation, P-selectin expression and granule secretion. GP (glycoprotein) αIIb and Ib-V were identified as putative Gal-8 counter-receptors by MS. Studies performed using platelets from Glanzmann's thromboasthenia and Bernard–Soulier syndrome patients confirmed that GPIb is essential for transducing Gal-8 signalling. Accordingly, Src, PLC2γ (phospholipase C2γ), ERK (extracellular-signal-regulated kinase) and PI3K (phosphoinositide 3-kinase)/Akt downstream molecules were involved in the Gal-8 signalling pathway. Gal-8 fragments containing either the N- or C-terminal carbohydrate-recognition domains showed that activation is exerted through the N-terminus. Western blotting and cytometry showed that platelets not only contain Gal-8, but also expose Gal-8 after thrombin activation. These findings reveal Gal-8 as a potent platelet activator, supporting a role for this lectin in thrombosis and inflammation.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1060-1060
Author(s):  
Soochong Kim ◽  
Carol Dangelmaier ◽  
Dheeraj Bhavanasi ◽  
Shu Meng ◽  
Hong Wang ◽  
...  

Abstract We investigated the mechanism of activation and functional role of a hitherto uncharacterized signaling molecule, RhoG, in platelets. RhoG is a ubiquitously expressed member of the Rho Family of GTPases. We demonstrated for the first time the expression [Fig 1A] and activation of RhoG [Fig 1B] in platelets. Platelet aggregation and dense-granule secretion in response to glycoprotein VI (GPVI) agonists, collagen-related peptide (CRP) and convulxin were significantly inhibited in RhoG-deficient platelets compared to wild type murine platelets [Fig 1C]. Integrin αIIbβ3 activation and α-granule secretion as measured by flow cytometry were also significantly inhibited in RhoG-deficient murine platelets downstream of GPVI agonists. In contrast, 2-MeSADP- and AYPGKF-induced platelet aggregation and secretion [Fig 1D] were minimally affected in RhoG deficient platelets, indicating that the function of RhoG in platelets is GPVI-specific.Figure 1(A): Increasing amounts of human platelet lysate (in μg) were separated by SDS-PAGE, Western blotted, and probed with anti-RhoG antibody. (B) RhoG activation was measured upon stimulation of washed human platelets with 5μg/ml CRP for various times. Washed platelets were lysed and active GTP-bound RhoG was determined by pull-down analysis using bacterially expressed GST-ELMO. (C) Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with GPVI agonists, 2.5 μg/ml CRP and 100 ng/ml convulxin and (D) G protein coupled receptor agonists, 30 nM 2MeSADP and 100 μM AYPGKF for 3.5 min under stirring conditions. Platelet aggregation and ATP secretion were measured by aggregometry.Figure 1. (A): Increasing amounts of human platelet lysate (in μg) were separated by SDS-PAGE, Western blotted, and probed with anti-RhoG antibody. (B) RhoG activation was measured upon stimulation of washed human platelets with 5μg/ml CRP for various times. Washed platelets were lysed and active GTP-bound RhoG was determined by pull-down analysis using bacterially expressed GST-ELMO. (C) Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with GPVI agonists, 2.5 μg/ml CRP and 100 ng/ml convulxin and (D) G protein coupled receptor agonists, 30 nM 2MeSADP and 100 μM AYPGKF for 3.5 min under stirring conditions. Platelet aggregation and ATP secretion were measured by aggregometry. CRP-induced phosphorylations of Syk, Akt and ERK, but not Src family kinases (SFKs), were significantly reduced in RhoG-deficient platelets compared to those of wild type [Fig 2A]. Consistently, CRP-induced RhoG activation was abolished by pan-SFK inhibitor but not by Syk or PI 3-kinase inhibitors [Fig 2B]. Interestingly, unlike CRP, platelet aggregation and Syk phosphorylation induced by fucoidan, a CLEC-2 agonist, were unaffected in RhoG deficient platelets [Fig 2C].Figure 2(A): Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with 2.5 μg/ml CRP and at 37 °C for 2 min and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Src (Tyr416), anti-phospho-Akt (Ser473), anti-phospho-ERK, or anti-β-actin (lane loading control) antibodies by western blotting. (B): RhoG activation induced by 5μg/ml CRP for 60 sec was evaluated in the presence and absence of 10 μM PP2, 2 μM OXSI-2, or 100nM wortmannin. (C): Wild type and RhoG-deficient platelets were stimulated with 100 μg/ml fucoidan and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Akt (Ser473), or anti-β-actin (lane loading control) antibodies by western blotting.Figure 2. (A): Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with 2.5 μg/ml CRP and at 37 °C for 2 min and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Src (Tyr416), anti-phospho-Akt (Ser473), anti-phospho-ERK, or anti-β-actin (lane loading control) antibodies by western blotting. (B): RhoG activation induced by 5μg/ml CRP for 60 sec was evaluated in the presence and absence of 10 μM PP2, 2 μM OXSI-2, or 100nM wortmannin. (C): Wild type and RhoG-deficient platelets were stimulated with 100 μg/ml fucoidan and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Akt (Ser473), or anti-β-actin (lane loading control) antibodies by western blotting. Finally, RhoG -/- mice had a significant delay in time to thrombotic occlusion in cremaster arterioles compared to wild type littermates [Fig 3A and 3B], indicating the important in vivo functional role of RhoG in platelets.Figure 3(A): Time required for occlusion of cremaster arterioles in RhoG +/+ and RhoG -/- mice was measured using microvascular thrombosis model with light/dye-induced injury. 5 mice of each genotype were used, and statistical analysis revealed a significant difference between the 2 genotypes of mice (*, P < .01). (B) Representative images of cremaster arterioles were taken from RhoG +/+ and RhoG -/- mice 30 min after the injury. As seen with the outline (arrows) of the thrombus formed, thrombus formation was inhibited in RhoG -/- mice.Figure 3. (A): Time required for occlusion of cremaster arterioles in RhoG +/+ and RhoG -/- mice was measured using microvascular thrombosis model with light/dye-induced injury. 5 mice of each genotype were used, and statistical analysis revealed a significant difference between the 2 genotypes of mice (*, P < .01). (B) Representative images of cremaster arterioles were taken from RhoG +/+ and RhoG -/- mice 30 min after the injury. As seen with the outline (arrows) of the thrombus formed, thrombus formation was inhibited in RhoG -/- mice. In conclusion, we show for the first time that RhoG is expressed and activated in platelets, plays an important role in GPVI/FcRγ-mediated platelet activation and is critical for thrombus formation in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (12) ◽  
pp. 4523-4531 ◽  
Author(s):  
Katherine L. Tucker ◽  
Tanya Sage ◽  
Joanne M. Stevens ◽  
Peter A. Jordan ◽  
Sarah Jones ◽  
...  

Abstract Integrin-linked kinase (ILK) has been implicated in the regulation of a range of fundamental biological processes such as cell survival, growth, differentiation, and adhesion. In platelets ILK associates with β1- and β3-containing integrins, which are of paramount importance for the function of platelets. Upon stimulation of platelets this association with the integrins is increased and ILK kinase activity is up-regulated, suggesting that ILK may be important for the coordination of platelet responses. In this study a conditional knockout mouse model was developed to examine the role of ILK in platelets. The ILK-deficient mice showed an increased bleeding time and volume, and despite normal ultrastructure the function of ILK-deficient platelets was decreased significantly. This included reduced aggregation, fibrinogen binding, and thrombus formation under arterial flow conditions. Furthermore, although early collagen stimulated signaling such as PLCγ2 phosphorylation and calcium mobilization were unaffected in ILK-deficient platelets, a selective defect in α-granule, but not dense-granule, secretion was observed. These results indicate that as well as involvement in the control of integrin affinity, ILK is required for α-granule secretion and therefore may play a central role in the regulation of platelet function.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4222-4231 ◽  
Author(s):  
Anna Shcherbina ◽  
Eileen Remold-O’Donnell

Abstract Platelets function to protect the integrity of the vascular wall. A subset of platelet activation responses that are especially important for thrombus formation include exposure of phosphatidylserine and release of microparticles, which generate procoagulant surfaces. The resemblance of these platelet activation processes to events occurring in nucleated cells undergoing apoptosis suggests a possible role for caspases, which are major effector enzymes of nucleated cell apoptosis. We demonstrate here the presence of caspase-3 in human platelets and its activation by physiological platelet agonists. Using cell-permeable specific inhibitors, we demonstrate a role for a caspase-3–like protease in the agonist-induced (collagen plus thrombin or Ca2+ ionophore) platelet activation events of phosphatidylserine exposure, microparticle release, and cleavage of moesin, a cytoskeletal-membrane linker protein. The role of caspase-3 in platelet activation is restricted rather than global, because other activation responses,  granule secretion, shape change, and aggregation were unaffected by caspase-3 inhibitors. Experiments with two classes of protease inhibitors show that caspase-3 function is distinct from that of calpain, which is also involved in late platelet activation events. These findings show novel functions of caspase and provide new insights for understanding of platelet activation.


2005 ◽  
Vol 280 (23) ◽  
pp. 21756-21762 ◽  
Author(s):  
K. Vinod Vijayan ◽  
Yan Liu ◽  
Wensheng Sun ◽  
Masaaki Ito ◽  
Paul F. Bray

Integrin β3 is polymorphic at residue 33 (Leu33 or Pro33), and the Pro33-positive platelets display enhanced aggregation, P-selectin secretion, and shorter bleeding times. Because outside-in signaling is critical for platelet function, we hypothesized that the Pro33 variant provides a more efficient signaling than the Leu33 isoform. When compared with Pro33-negative platelets, Pro33-positive platelets demonstrated significantly greater serine/threonine phosphorylation of extracellular signal-regulated kinase (ERK2) and myosin light chain (MLC) but not cytoplasmic phospholipase A2 upon thrombin-induced aggregation. Tyrosine phosphorylation of integrin β3 and the adaptor protein Shc was no different in the fibrinogen-engaged platelets from both genotypes. The addition of Integrilin (αIIbβ3-fibrinogen blocker) or okadaic acid (serine/threonine phosphatase inhibitor) dramatically enhanced ERK2 and MLC phosphorylation in the Pro33-negative platelets when compared with Pro33-positive platelets, suggesting that integrin engagement during platelet aggregation activates serine/threonine phosphatases. The phosphatase activity of myosin phosphatase (MP) that dephosphorylates MLC is inactivated by phosphorylation of the myosin binding subunit of MP at Thr696, and aggregating Pro33-positive platelets exhibited an increased Thr696 phosphorylation of MP. These studies highlight a role for the dephosphorylation events via the serine/threonine phosphatases during the integrin outside-in signaling mechanism, and the Leu33 → Pro polymorphism regulates this process. Furthermore, these findings support a mechanism whereby the reported enhanced α granule secretion in the Pro33-positive platelets could be mediated by an increased phosphorylation of MLC, which in turn is caused by an increased phosphorylation and subsequent inactivation of myosin phosphatase.


1999 ◽  
Vol 19 (12) ◽  
pp. 8326-8334 ◽  
Author(s):  
Jean-Max Pasquet ◽  
Barbara Gross ◽  
Lynn Quek ◽  
Naoki Asazuma ◽  
Weiguo Zhang ◽  
...  

ABSTRACT In the present study, we have addressed the role of the linker for activation of T cells (LAT) in the regulation of phospholipase Cγ2 (PLCγ2) by the platelet collagen receptor glycoprotein VI (GPVI). LAT is tyrosine phosphorylated in human platelets heavily in response to collagen, collagen-related peptide (CRP), and FcγRIIA cross-linking but only weakly in response to the G-protein-receptor-coupled agonist thrombin. LAT tyrosine phosphorylation is abolished in CRP-stimulated Syk-deficient mouse platelets, whereas it is not altered in SLP-76-deficient mice or Btk-deficient X-linked agammaglobulinemia (XLA) human platelets. Using mice engineered to lack the adapter LAT, we showed that tyrosine phosphorylation of Syk and Btk in response to CRP was maintained in LAT-deficient platelets whereas phosphorylation of SLP-76 was slightly impaired. In contrast, tyrosine phosphorylation of PLCγ2 was substantially reduced in LAT-deficient platelets but was not completely inhibited. The reduction in phosphorylation of PLCγ2 was associated with marked inhibition of formation of phosphatidic acid, a metabolite of 1,2-diacylglycerol, phosphorylation of pleckstrin, a substrate of protein kinase C, and expression of P-selectin in response to CRP, whereas these parameters were not altered in response to thrombin. Activation of the fibrinogen receptor integrin αIIbβ3 in response to CRP was also reduced in LAT-deficient platelets but was not completely inhibited. These results demonstrate that LAT tyrosine phosphorylation occurs downstream of Syk and is independent of the adapter SLP-76, and they establish a major role for LAT in the phosphorylation and activation of PLCγ2, leading to downstream responses such as α-granule secretion and activation of integrin αIIbβ3. The results further demonstrate that the major pathway of tyrosine phosphorylation of SLP-76 is independent of LAT and that there is a minor, LAT-independent pathway of tyrosine phosphorylation of PLCγ2. We propose a model in which LAT and SLP-76 are required for PLCγ2 phosphorylation but are regulated through independent pathways downstream of Syk.


Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3800-3805 ◽  
Author(s):  
Franck Bugaud ◽  
Florence Nadal-Wollbold ◽  
Sylviane Lévy-Toledano ◽  
Jean-Philippe Rosa ◽  
Marijke Bryckaert

Abstract Platelets are an interesting model for studying the relationship betwen adhesion and mitogen-activated protein (MAP) kinase activation. We have recently shown that in platelets, ERK2 was activated by thrombin and downregulated by IIbβ3integrin engagement. Here we focused our attention on the c-Jun NH2-terminal kinases (JNKs) and their activation in conditions of platelet aggregation. We found that JNK1 was present in human platelets and was activated after thrombin induction. JNK1 phosphorylation was detected with low concentrations of thrombin (0.02 U/mL) and after 1 minute of thrombin-induced platelet aggregation. JNK1 activation was increased (fivefold) when fibrinogen binding to IIbβ3 integrin was inhibited by the Arg-Gly-Asp-Ser (RGDS) peptide or (Fab′)2 fragments of a monoclonal antibody specific for IIbβ3, demonstrating that, like ERK2, IIbβ3 integrin engagement negatively regulates JNK1 activation. Comparison of JNK1 activation by thrombin in stirred and unstirred platelets in the presence of RGDS peptide showed a positive regulation by stirring itself, independently of IIbβ3 integrin engagement, which was confirmed in a thrombasthenic patient lacking platelet IIbβ3. The same positive regulation by stirring was found for ERK2. These results suggest that MAP kinases (JNK1 and ERK2) are activated positively by thrombin and stirring. In conclusion, we found that JNK1 is present in platelets and can be activated after thrombin induction. Moreover, this is the first report showing that two different MAP kinases (ERK2 and JNK1) are regulated negatively by IIbβ3 engagement and positively by mechanical forces in platelets.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3611-3611
Author(s):  
Xi Chen ◽  
Shuchi Gupta ◽  
Matthew Cooper ◽  
Daniel Dehelian ◽  
Xuefei Zhao ◽  
...  

Inappropriate platelet activation remains a major cause of cardiovascular and cerebrovascular diseases. Most agonists activate platelets through G protein-coupled receptors (GPCRs). However, questions remain about mechanisms that provide negative feedback towards activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in WT controls during the early stages of thrombus formation, with a rapid increase of platelet accumulation at site of injury. Platelet activation in the absence of GRK6 is enhanced, but in an agonist-selective manner. Responses to PAR4 agonist peptide or ADP stimulation in GRK6-/- platelets are increased compared to WT control littermates, while the response to TxA2 is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that in human platelets, platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase of the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Collectively, these observations, for the first time, show that 1) GRK6 regulates the hemostatic response to injury by thrombin and ADP, 2) it mediates platelet activation by reducing PAR1/4- and P2Y12-dependent signaling, and 3) GRK6 limits the rate of platelet activation during early stage of thrombus growth and helps prevent inappropriate platelet activation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3538-3538
Author(s):  
Wei Zhang ◽  
Gary Nale ◽  
Robert W. Colman

Abstract Phosphorylation /activation of Akt is a critical event in platelet activation stimulated by thrombin. We previous demonstrated that the activation of PDE3A was increased concomitantly with the phosphorylation /activation of Akt. In order to demonstrate a link between these two events, in this study, we monitored thrombin-induced cAMP changes in washed platelets. We confirmed that the platelet cAMP level decreased following thrombin stimulation. The thrombin-induced decrease of cAMP was inhibited by an Akt specific inhibitor (1l-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate). This Akt inhibitor exhibited a concentration-dependent inhibition of thrombin-induced decrease of cAMP. The Akt inhibitor blocked 70 % of thrombin-induced decrease of cAMP. Moreover, a phosphoinositide 3-kinase inhibitor wortmannin also reduced the thrombin effect, consistent with its upstream position relative to Akt. These results suggested that phosphorylation /activation of Akt is required for decrease of cAMP in platelets. In addition, we found that thrombin-induced cAMP level changes were markedly reduced following preincubation of platelets with milrinone, a selective PDE3A inhibitor. We therefore examined PDE3A activity after stimulation of platelets with thrombin with or without the Akt inhibitor or wortmannin. Either the Akt inhibitor or wortmannin inhibited the thrombin-induced activation of PDE3A. Our data indicated that phosphorylation/activation of Akt plays a major role in regulation of cAMP by thrombin. The activation of Akt by thrombin results in activation of PDE3A and a consequent decrease of the intracellular cAMP level, which serves as a positive feedback enhancing the thrombin activation of platelet function. Understanding the mechanisms that are involved in regulation of PDE3A in platelets could provide new targets for therapeutic advances in the treatment of thrombotic disorders.


2019 ◽  
Vol 3 (4) ◽  
pp. 575-587 ◽  
Author(s):  
Akruti Patel ◽  
John Kostyak ◽  
Carol Dangelmaier ◽  
Rachit Badolia ◽  
Dheeraj Bhavanasi ◽  
...  

Abstract Phosphatidylinositol 3-kinase is an important signaling molecule that, once activated, leads to the generation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). We performed a proteomic screen to identify PIP3-interacting proteins in human platelets. Among these proteins, we found engulfment and cell motility 1 (ELMO1), a scaffold protein with no catalytic activity. ELMO1 is expressed in platelets and interacts with active RhoG. However, the function of ELMO1 in platelets is not known. The focus of this study was to determine the function of ELMO1 in platelets utilizing ELMO1−/− mice. Platelet aggregation, granule secretion, integrin αIIbβ3 activation, and thromboxane generation were enhanced in ELMO1−/− platelets in response to glycoprotein VI (GPVI) agonists but unaltered when a protease-activated receptor 4 agonist was used. The kinetics of spreading on immobilized fibrinogen was enhanced in ELMO1−/− platelets compared with wild-type (WT) littermate controls. This suggests that ELMO1 plays a role downstream of the GPVI and integrin αIIbβ3 pathway. Furthermore, whole blood from ELMO1−/− mice perfused over collagen exhibited enhanced thrombus formation compared with WT littermate controls. ELMO1−/− mice showed reduced survival compared with control following pulmonary embolism. ELMO1−/− mice also exhibited a shorter time to occlusion using the ferric-chloride injury model and reduced bleeding times compared with WT littermate controls. These results indicate that ELMO1 plays an important role in hemostasis and thrombosis in vivo. RhoG activity was enhanced in ELMO1−/− murine platelets compared with WT littermate controls in response to GPVI agonist. Together, these data suggest that ELMO1 negatively regulates GPVI-mediated thrombus formation via RhoG.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gagan D. Flora ◽  
Khaled A. Sahli ◽  
Parvathy Sasikumar ◽  
Lisa-Marie Holbrook ◽  
Alexander R. Stainer ◽  
...  

AbstractThe pregnane X receptor (PXR) is a nuclear receptor (NR), involved in the detoxification of xenobiotic compounds. Recently, its presence was reported in the human vasculature and its ligands were proposed to exhibit anti-atherosclerotic effects. Since platelets contribute towards the development of atherosclerosis and possess numerous NRs, we investigated the expression of PXR in platelets along with the ability of its ligands to modulate platelet activation. The expression of PXR in human platelets was confirmed using immunoprecipitation analysis. Treatment with PXR ligands was found to inhibit platelet functions stimulated by a range of agonists, with platelet aggregation, granule secretion, adhesion and spreading on fibrinogen all attenuated along with a reduction in thrombus formation (both in vitro and in vivo). The effects of PXR ligands were observed in a species-specific manner, and the human-specific ligand, SR12813, was observed to attenuate thrombus formation in vivo in humanised PXR transgenic mice. PXR ligand-mediated inhibition of platelet function was found to be associated with the inhibition of Src-family kinases (SFKs). This study identifies acute, non-genomic regulatory effects of PXR ligands on platelet function and thrombus formation. In combination with the emerging anti-atherosclerotic properties of PXR ligands, these anti-thrombotic effects may provide additional cardio-protective benefits.


Sign in / Sign up

Export Citation Format

Share Document