Role and function of macrophages in the metabolic syndrome

2012 ◽  
Vol 442 (2) ◽  
pp. 253-262 ◽  
Author(s):  
Prerna Bhargava ◽  
Chih-Hao Lee

Macrophages are key innate immune effector cells best known for their role as professional phagocytes, which also include neutrophils and dendritic cells. Recent evidence indicates that macrophages are also key players in metabolic homoeostasis. Macrophages can be found in many tissues, where they respond to metabolic cues and produce pro- and/or anti-inflammatory mediators to modulate metabolite programmes. Certain metabolites, such as fatty acids, ceramides and cholesterol crystals, elicit inflammatory responses through pathogen-sensing signalling pathways, implicating a maladaptation of macrophages and the innate immune system to elevated metabolic stress associated with overnutrition in modern societies. The outcome of this maladaptation is a feedforward inflammatory response leading to a state of unresolved inflammation and a collection of metabolic pathologies, including insulin resistance, fatty liver, atherosclerosis and dyslipidaemia. The present review summarizes what is known about the contributions of macrophages to metabolic diseases and the signalling pathways that are involved in metabolic stress-induced macrophage activation. Understanding the role of macrophages in these processes will help us to develop therapies against detrimental effects of the metabolic syndrome.

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 253
Author(s):  
Graciela Gavia-García ◽  
Juana Rosado-Pérez ◽  
Taide Laurita Arista-Ugalde ◽  
Itzen Aguiñiga-Sánchez ◽  
Edelmiro Santiago-Osorio ◽  
...  

A great amount of scientific evidence supports that Oxidative Stress (OxS) can contribute to telomeric attrition and also plays an important role in the development of certain age-related diseases, among them the metabolic syndrome (MetS), which is characterised by clinical and biochemical alterations such as obesity, dyslipidaemia, arterial hypertension, hyperglycaemia, and insulin resistance, all of which are considered as risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which are associated in turn with an increase of OxS. In this sense, we review scientific evidence that supports the association between OxS with telomere length (TL) dynamics and the relationship with MetS components in aging. It was analysed whether each MetS component affects the telomere length separately or if they all affect it together. Likewise, this review provides a summary of the structure and function of telomeres and telomerase, the mechanisms of telomeric DNA repair, how telomere length may influence the fate of cells or be linked to inflammation and the development of age-related diseases, and finally, how the lifestyles can affect telomere length.


2021 ◽  
Vol 12 ◽  
Author(s):  
Antonino Mulè ◽  
Eleonora Bruno ◽  
Patrizia Pasanisi ◽  
Letizia Galasso ◽  
Lucia Castelli ◽  
...  

Rest-Activity circadian Rhythm (RAR) can be used as a marker of the circadian timing system. Recent studies investigated the relationship between irregular circadian rhythms and cardiovascular risk factors such as hypertension, obesity, and dyslipidemia. These factors are related to the Metabolic Syndrome (MS), a clustering of metabolic risk factors that increases the risk of several cardiovascular and metabolic diseases. This cross-sectional analysis aimed to explore the RAR characteristics by actigraphy in subjects with MS, particularly in relation to sex and MS parameters, using parametric and non-parametric analyses. Distinguishing the characteristics of RAR based on sex could prove useful as a tool to improve the daily level of activity and set up customized activity programs based on each person’s circadian activity profile. This study showed that female participants exhibited higher values than male participants in the Midline Estimating Statistic of Rhythm (MESOR) (243.3 ± 20.0 vs 197.6 ± 17.9 activity count), Amplitude (184.5 ± 18.5 vs 144.2 ± 17.2 activity count), which measures half of the extent of the rhythmic variation in a cycle, and the most active 10-h period (M10) (379.08 ± 16.43 vs 295.13 ± 12.88 activity count). All these parameters are indicative of a higher daily activity level in women. Female participants also had lower Intradaily Variability (IV) than male participants (0.75 ± 0.03 vs 0.85 ± 0.03 activity count), which indicates a more stable and less fragmented RAR. These preliminary data provide the first experimental evidence of a difference in RAR parameters between male and female people with MS.


2019 ◽  
Vol 9 (5-s) ◽  
pp. 167-169
Author(s):  
Dhananjay S. Khot

The metabolic disorders are major health issues of today’s scenario and incidences of metabolic diseases increases day by day due to the disturbed pattern of life style. Ayurveda texts have described term “Santarpanjanya Vikaras” which resembles diseases of defective tissue metabolism. Ayurveda mentioned that improper dietary habits and sedentary life style affects state of Agni which resulted Ama production and finally leading to the metabolic syndrome. The vitiation of Dosha, diminish state of Dhatu and blockage of channels, etc. also can initiate pathogenesis of metabolic disorders. The Kayachikitsa branch of Ayurveda recommended use of internal medicine for the management of various metabolic disorders. Considering increased health burden of society due to the metabolic syndrome present article explore role of ayurveda internal medicine for the management of metabolic syndrome. Keywords: Ayurveda, metabolic syndrome, Santarpanjanya, Madhumeha and Sthoulya.       


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Catalán ◽  
Miguel Andrés Mansilla ◽  
Ashley Ferrier ◽  
Lilian Soto ◽  
Kristine Oleinika ◽  
...  

Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.


2020 ◽  
Vol 11 ◽  
Author(s):  
Giulia Sanino ◽  
Martino Bosco ◽  
Giuseppe Terrazzano

SARS-CoV2 infection not only causes abnormal severe pneumonia but also induces other relevant pathophysiological effects on several tissues and organs. In this regard, the clinical complications observed in COVID-19 include acute coronary syndrome, pulmonary thromboembolism, myocarditis and, in the severe cases, the occurrence of disseminated intravascular coagulation. Literature on COVID-19 highlighted the central role of the Renin Angiotensin Aldosterone System in the determinism of SARS-CoV2 cellular internalization in the target tissues. Lung degeneration and respiratory distress appear to be dependent on the perturbance of physiological mechanisms, such as the uncontrolled release of pro-inflammatory cytokines, a dysregulation of the fibrinolytic coagulative cascade and the hyperactivation of immune effector cells. In this mini review, we address the physiology of Midkine, a growth factor able to bind heparin, and its pathophysiological potential role in COVID-19 determinism. Midkine increases in many inflammatory and autoimmune conditions and correlates with several dysfunctional immune-inflammatory responses that appear to show similarities with the pathophysiological elicited by SARS-CoV2. Midkine, together with its receptor, could facilitate the virus entry, fostering its accumulation and increasing its affinity with Ace2 receptor. We also focus on Netosis, a particular mechanism of pathogen clearance exerted by neutrophils, which under certain pathological condition becomes dysfunctional and can cause tissue damage. Moreover, we highlight the mechanism of autophagy that the new coronavirus could try to escape in order to replicate itself, as well as on pulmonary fibrosis induced by hypoxia and on the release of cytokines and mediators of inflammation, correlating the interplay between Midkine and SARS-CoV2.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2621
Author(s):  
Yun Kyung Lee ◽  
Yu Seong Chung ◽  
Ji Hye Lee ◽  
Jin Mi Chun ◽  
Jun Hong Park

For more than three decades, numerous studies have demonstrated the function of p53 in cell cycle, cellular senescence, autophagy, apoptosis, and metabolism. Among diverse functions, the essential role of p53 is to maintain cellular homeostatic response to stress by regulating proliferation and apoptosis. Recently, adipocytes have been studied with increasing intensity owing to the increased prevalence of metabolic diseases posing a serious public health concern and because metabolic dysfunction can directly induce tumorigenesis. The prevalence of metabolic diseases has steadily increased worldwide, and a growing interest in these diseases has led to the focus on the role of p53 in metabolism and adipocyte differentiation with or without metabolic stress. However, our collective understanding of the direct role of p53 in adipocyte differentiation and function remains insufficient. Therefore, this review focuses on the newly discovered roles of p53 in adipocyte differentiation and function.


2020 ◽  
pp. 1-14 ◽  
Author(s):  
Hyunju Kim ◽  
Kyueun Lee ◽  
Casey M. Rebholz ◽  
Jihye Kim

Abstract No studies have investigated the associations between established plant-based diet indices and the metabolic syndrome (MetS). We evaluated the associations between an overall plant-based diet index (PDI), healthy PDI (hPDI), unhealthy PDI (uPDI) and the MetS in a nationally representative sample using data from 14 450 Korean adults (≥19 years) in the Korea National Health and Nutrition Examination Survey 2012–2016. Dietary intakes were assessed by a semi-quantitative FFQ. In the PDI, all plant foods received positive scores. In the hPDI, only healthy plant foods received positive scores. In the uPDI, only unhealthy plant foods received positive scores. All indices reverse scored animal food intake. Multivariable logistic regression models were used to examine the associations between three PDI and the MetS by sex, adjusting for potential risk factors. A total of 23·3 % of Korean adults had the MetS. In the overall study population, individuals in the highest quintile of uPDI had greater odds (OR 1·54, 95 % CI 1·28, 1·86, Ptrend < 0·001) of the MetS than those in the lowest quintile. Higher uPDI score was associated with higher odds of hypertriacylglycerolaemia in men and abdominal obesity, high fasting glucose and hypertriacylglycerolaemia in women. No significant associations were observed between PDI, hPDI and the MetS. Greater adherence to unhealthy plant-based diets was associated with greater odds of the MetS and its components suggesting the importance of the quality of plant-based diet in South Korean adults. Sex differences may be considered when recommending plant-based diets for the prevention and management of metabolic diseases.


Sign in / Sign up

Export Citation Format

Share Document