scholarly journals Determinant of the extracellular location of the N-terminus of human multidrug-resistance-associated protein

2000 ◽  
Vol 348 (3) ◽  
pp. 597-606 ◽  
Author(s):  
Jian-Ting ZHANG

Multidrug-resistance-associated protein (MRP) is a member of the ATP-binding cassette (ABC) membrane-transport superfamily and is responsible for multidrug resistance in cancer cells. Distinct from other members of the ABC superfamily, MRP has three membrane-spanning domains (MSDs) and the N-terminus is located extracellularly. It has been shown that the first MSD (MSD1) with an extracellular N-terminus is important for MRP function. To address what ensures the generation of this structural organization of MRP and to understand in general the molecular mechanism of membrane folding of polytopic proteins with extracellular N-termini, the biogenesis of MSD1 in human MRP1 was examined using an in vitro expression system. Surprisingly, the second transmembrane segment (TM2) in MSD1 was found to play a critical role in the correct membrane translocation and folding of MSD1 in human MRP1. TM2 not only plays an essential role to ensure the N-terminus-outside/C-terminus-inside orientation of TM1 with an extracellular N-terminus, it can also translocate into membranes post-translationally in a signal-recognition particle and ribosome-dependent manner to provide an additional insurance for correct folding of MSD1 in MRP. These findings suggest that TM2 in a polytopic membrane protein with an extracellular N-terminus may play a critical role in controlling correct membrane translocation and folding of the protein in general.

2007 ◽  
Vol 52 (2) ◽  
pp. 612-618 ◽  
Author(s):  
Judicaël Parisot ◽  
Sarah Carey ◽  
Eefjan Breukink ◽  
Weng C. Chan ◽  
Arjan Narbad ◽  
...  

ABSTRACT The increasing resistance of human pathogens to conventional antibiotics presents a growing threat to the chemotherapeutic management of infectious diseases. The lanthionine antibiotics, still unused as therapeutic agents, have recently attracted significant scientific interest as models for targeting and management of bacterial infections. We investigated the action of one member of this class, subtilin, which permeabilizes lipid membranes in a lipid II-dependent manner and binds bactoprenyl pyrophosphate, akin to nisin. The role the C and N termini play in target recognition was investigated in vivo and in vitro by using the natural N-terminally succinylated subtilin as well as enzymatically truncated subtilin variants. Fluorescence dequenching experiments show that subtilin induces leakage in membranes in a lipid II-dependent manner and that N-succinylated subtilin is roughly 75-fold less active. Solid-state nuclear magnetic resonance was used to show that subtilin forms complexes with membrane isoprenyl pyrophosphates. Activity assays in vivo show that the N terminus of subtilin plays a critical role in its activity. Succinylation of the N terminus resulted in a 20-fold decrease in its activity, whereas deletion of N-terminal Trp abolished activity altogether.


2017 ◽  
Vol 42 (6) ◽  
pp. 2552-2558 ◽  
Author(s):  
Jingsong Liu ◽  
Ying Zhong ◽  
Guoyong Liu ◽  
Xiaobai Zhang ◽  
Bofei Xiao ◽  
...  

Background/Aims: Transforming growth factor β 1 (TGFβ1) plays a critical role in the epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs) during renal injury, a major cause of acute renal failure, renal fibrosis and obstructive nephropathy. However, the underlying molecular mechanisms remain ill-defined. Here, we addressed this question. Methods: Expression of TGFβ1, Snail, and phosphorylated Stat3 was examined by immunohistochemistry in the kidney after induction of unilateral ureteral obstruction (UUO) in mice. In vitro, primary TECs were purified by flow cytometry, and then challenged with TGFβ1 with/without presence of specific inhibitors for phosphorylation of SMAD3 or Stat3. Protein levels were determined by Western blotting. Results: We detected significant increases in Snail and phosphorylated Stat3, an activated form for Stat3, in the kidney after induction of UUO in mice. In vitro, TGFβ1-challenged primary TECs upregulated Snail, in a SMAD3/Stat3 dependent manner. Conclusion: Our study sheds light on the mechanism underlying the EMT of TECs after renal injury, and suggests Stat3 signaling as a promising innovative therapeutic target for prevention of renal fibrosis.


2020 ◽  
Author(s):  
Ramakrishnan B. Kumar ◽  
Pasi Purhonen ◽  
Hans Hebert ◽  
Caroline Jegerschöld

AbstractAmong the first steps in inflammation is the conversion of arachidonic acid (AA) stored in the cell membranes into leukotrienes. This occurs mainly in leukocytes and depends on the interaction of two proteins: 5-lipoxygenase (5LO), stored away from the nuclear membranes until use and 5-lipoxygenase activating protein (FLAP), a transmembrane, homotrimeric protein, constitutively present in nuclear membrane. We could earlier visualize the binding of 5LO to nanodiscs in the presence of Ca2+-ions by the use of transmission electron microscopy (TEM) on samples negatively stained by sodium phosphotungstate. In the absence of Ca2+-ions 5LO did not bind to the membrane. In the present communication, FLAP reconstituted in the nanodiscs which could be purified if the His-tag was located on the FLAP C-terminus but not the N-terminus. Our aim was to find out if 1) 5LO would bind in a Ca2+-dependent manner also when FLAP is present? 2) Would the substrate (AA) have effects on 5LO binding to FLAP-nanodiscs? TEM was used to assess the complex formation between 5LO and FLAP-nanodiscs along with, sucrose gradient purification, gel-electrophoresis and mass spectroscopy. It was found that presence of AA by itself induces complex formation in the absence of added calcium. This finding corroborates that AA is necessary for the complex formation and that a Ca2+-flush is mainly needed for the recruitment of 5LO to the membrane. Our results also showed that the addition of Ca2+-ions promoted binding of 5LO on the FLAP-nanodiscs as was also the case for nanodiscs without FLAP incorporated. In the absence of added substances no 5LO-FLAP complex was formed. Another finding is that the formation of a 5LO-FLAP complex appears to induce fragmentation of 5LO in vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jomkuan Theprungsirikul ◽  
Sladjana Skopelja-Gardner ◽  
Ashley S. Burns ◽  
Rachel M. Wierzbicki ◽  
William F. C. Rigby

Chronic Pseudomonas aeruginosa infection mysteriously occurs in the airways of patients with cystic fibrosis (CF), bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD) in the absence of neutrophil dysfunction or neutropenia and is strongly associated with autoimmunity to bactericidal permeability-increasing protein (BPI). Here, we define a critical role for BPI in in vivo immunity against P. aeruginosa. Wild type and BPI-deficient (Bpi-/-) mice were infected with P. aeruginosa, and bacterial clearance, cell infiltrates, cytokine production, and in vivo phagocytosis were quantified. Bpi-/- mice exhibited a decreased ability to clear P. aeruginosa in vivo in concert with increased neutrophil counts and cytokine release. Bpi-/- neutrophils displayed decreased phagocytosis that was corrected by exogenous BPI in vitro. Exogenous BPI also enhanced clearance of P. aeruginosa in Bpi-/- mice in vivo by increasing P. aeruginosa uptake by neutrophils in a CD18-dependent manner. These data indicate that BPI plays an essential role in innate immunity against P. aeruginosa through its opsonic activity and suggest that perturbations in BPI levels or function may contribute to chronic lung infection with P. aeruginosa.


2016 ◽  
Vol 27 (11) ◽  
pp. 1797-1808 ◽  
Author(s):  
Francesca Bartolini ◽  
Laura Andres-Delgado ◽  
Xiaoyi Qu ◽  
Sara Nik ◽  
Nagendran Ramalingam ◽  
...  

Multiple formins regulate microtubule (MT) arrays, but whether they function individually or in a common pathway is unknown. Lysophosphatidic acid (LPA) stimulates the formation of stabilized detyrosinated MTs (Glu MTs) in NIH3T3 fibroblasts through RhoA and the formin mDia1. Here we show that another formin, INF2, is necessary for mDia1-mediated induction of Glu MTs and regulation of MT dynamics and that mDia1 can be bypassed by activating INF2. INF2 localized to MTs after LPA treatment in an mDia1-dependent manner, suggesting that mDia1 regulates INF2. Mutants of either formin that disrupt their interaction failed to rescue MT stability in cells depleted of the respective formin, and the mDia1-interacting protein IQGAP1 regulated INF2’s localization to MTs and the induction of Glu MTs by either formin. The N-terminus of IQGAP1 associated with the C-terminus of INF2 directly, suggesting the possibility of a tripartite complex stimulated by LPA. Supporting this, the interaction of mDia1 and INF2 was induced by LPA and dependent on IQGAP1. Our data highlight a unique mechanism of formin action in which mDia1 and INF2 function in series to stabilize MTs and point to IQGAP1 as a scaffold that facilitates the activation of one formin by another.


Author(s):  
Jing-Quan Wang ◽  
Qiu-Xu Teng ◽  
Zi-Ning Lei ◽  
Ning Ji ◽  
Qingbin Cui ◽  
...  

Overexpression of ABCG2 remains a major impediment to successful cancer treatment, because ABCG2 functions as an efflux pump of chemotherapeutic agents and causes clinical multidrug resistance (MDR). Therefore, it is important to uncover effective modulators to circumvent ABCG2-mediated MDR in cancers. In this study, we reported that AZ-628, a RAF kinase inhibitor, effectively antagonizes ABCG2-mediated MDR in vitro. Our results showed that AZ-628 completely reversed ABCG2-mediated MDR at a non-toxic concentration (3 μM) without affecting ABCB1-, ABCC1-, or ABCC10 mediated MDR. Further studies revealed that the reversal mechanism was by attenuating ABCG2-mediated efflux and increasing intracellular accumulation of ABCG2 substrate drugs. Moreover, AZ-628 stimulated ABCG2-associated ATPase activity in a concentration-dependent manner. Docking and molecular dynamics simulation analysis showed that AZ-628 binds to the same site as ABCG2 substrate drugs with higher score. Taken together, our studies indicate that AZ-628 could be used in combination chemotherapy against ABCG2-mediated MDR in cancers.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fei Sun ◽  
Ke Zhou ◽  
Ke-yong Tian ◽  
Jie Wang ◽  
Jian-hua Qiu ◽  
...  

The spiral ganglion neurons (SGNs) are the primary afferent neurons in the spiral ganglion (SG), while their degeneration or loss would cause sensorineural hearing loss. As a cardiac-derived hormone, atrial natriuretic peptide (ANP) plays a critical role in cardiovascular homeostasis through binding to its functional receptors (NPR-A and NPR-C). ANP and its receptors are widely expressed in the mammalian nervous system where they could be implicated in the regulation of multiple neural functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors in the inner ear, their presence within the cochlear SG and their regulatory roles during auditory neurotransmission and development remain largely unknown. Based on our previous findings, we investigated the expression patterns of ANP and its receptors in the cochlear SG and dissociated SGNs and determined the influence of ANP on neurite outgrowth in vitro by using organotypic SG explants and dissociated SGN cultures from postnatal rats. We have demonstrated that ANP and its receptors are expressed in neurons within the cochlear SG of postnatal rat, while ANP may promote neurite outgrowth of SGNs via the NPR-A/cGMP/PKG pathway in a dose-dependent manner. These results indicate that ANP would play a role in normal neuritogenesis of SGN during cochlear development and represents a potential therapeutic candidate to enhance regeneration and regrowth of SGN neurites.


2020 ◽  
Vol 167 (5) ◽  
pp. 473-482 ◽  
Author(s):  
Sung-Gun Kim ◽  
Yu-Jen Chen ◽  
Liliana Falzon ◽  
Jean Baum ◽  
Masayori Inouye

Abstract Nascent polypeptides are synthesized on ribosomes starting at the N-terminus and simultaneously begin to fold during translation. We constructed N-terminal fragments of prosubtilisin E containing an intramolecular chaperone (IMC) at N-terminus to mimic cotranslational folding intermediates of prosubtilisin. The IMC-fragments of prosubtilisin exhibited progressive enhancement of their secondary structures and thermostabilities with increasing polypeptide length. However, even the largest IMC-fragment with 72 residues truncated from the C-terminus behaved as a molten globule, indicating the requirement of the C-terminal region to have a stable tertiary structure. Furthermore, truncation of the IMC in the IMC-fragments resulted in aggregation, suggesting that the IMC plays a crucial role to prevent misfolding and aggregation of cotranslational folding intermediates during translation of prosubtilisin polypeptide.


2006 ◽  
Vol 5 (2) ◽  
pp. 277-292 ◽  
Author(s):  
Jude Beaudoin ◽  
Simon Labbé

ABSTRACT Copper homeostasis within the cell is established and preserved by different mechanisms. Changes in gene expression constitute a way of maintaining this homeostasis. In Schizosaccharomyces pombe, the Cuf1 transcription factor is critical for the activation of copper transport gene expression under conditions of copper starvation. However, in the presence of elevated intracellular levels of copper, the mechanism of Cuf1 inactivation to turn off gene expression remains unclear. In this study, we provide evidence that inactivation of copper transport gene expression by Cuf1 is achieved through a copper-dependent, cytosolic retention of Cuf1. We identify a minimal nuclear localization sequence (NLS) between amino acids 11 to 53 within the Cuf1 N terminus. Deletion of this region and specific mutation of the Lys13, Arg16, Arg19, Lys24, Arg28, Lys45, Arg47, Arg50, and Arg53 residues to alanine within this putative NLS is sufficient to abrogate nuclear targeting of Cuf1. Under conditions of copper starvation, Cuf1 resides in the nucleus. However, in the presence of excess copper as well as silver ions, Cuf1 is sequestered in the cytoplasm, a process which requires the putative copper binding motif, 328Cys-X-Cys-X3-Cys-X-Cys-X2-Cys-X2-His342 (designated C-rich), within the C-terminal region of Cuf1. Deletion of this region and mutation of the Cys residues within the C-rich motif result in constitutive nuclear localization of Cuf1. By coexpressing the Cuf1 N terminus with its C terminus in trans and by using a two-hybrid assay, we show that these domains physically interact with each other in a copper-dependent manner. We propose a model wherein copper induces conformational changes in Cuf1 that promote a physical interaction between the Cuf1 N terminus and the C-rich motif in the C terminus that masks the NLS. Cuf1 is thereby sequestered in the cytosol under conditions of copper excess, thereby extinguishing copper transport gene expression.


2012 ◽  
Vol 33 (1) ◽  
Author(s):  
Yoko Usami ◽  
Yukihiro Kobayashi ◽  
Takahiro Kameda ◽  
Akari Miyazaki ◽  
Kazuyuki Matsuda ◽  
...  

MCs (mast cells) adversely affect atherosclerosis by promoting the progression of lesions and plaque destabilization. MC chymase cleaves apoA-I (apolipoprotein A-I), the main protein component of HDL (high-density lipoprotein). We previously showed that C-terminally truncated apoA-I (cleaved at the carboxyl side of Phe225) is present in normal human serum using a newly developed specific mAb (monoclonal antibody). In the present study, we aimed to identify chymase-induced cleavage sites in both lipid-free and lipid-bound (HDL3) forms of apoA-I. Lipid-free apoA-I was preferentially digested by chymase, at the C-terminus rather than the N-terminus. Phe229 and Tyr192 residues were the main cleavage sites. Interestingly, the Phe225 residue was a minor cleavage site. In contrast, the same concentration of chymase failed to digest apoA-I in HDL3; however, a 100-fold higher concentration of chymase modestly digested apoA-I in HDL3 at only the N-terminus, especially at Phe33. CPA (carboxypeptidase A) is another MC protease, co-localized with chymase in severe atherosclerotic lesions. CPA, in vitro, further cleaved C-terminal Phe225 and Phe229 residues newly exposed by chymase, but did not cleave Tyr192. These results indicate that several forms of C-terminally and N-terminally truncated apoA-I could exist in the circulation. They may be useful as new biomarkers to assess the risk of CVD (cardiovascular disease).


Sign in / Sign up

Export Citation Format

Share Document