scholarly journals Identification of sites in apolipoprotein A-I susceptible to chymase and carboxypeptidase A digestion

2012 ◽  
Vol 33 (1) ◽  
Author(s):  
Yoko Usami ◽  
Yukihiro Kobayashi ◽  
Takahiro Kameda ◽  
Akari Miyazaki ◽  
Kazuyuki Matsuda ◽  
...  

MCs (mast cells) adversely affect atherosclerosis by promoting the progression of lesions and plaque destabilization. MC chymase cleaves apoA-I (apolipoprotein A-I), the main protein component of HDL (high-density lipoprotein). We previously showed that C-terminally truncated apoA-I (cleaved at the carboxyl side of Phe225) is present in normal human serum using a newly developed specific mAb (monoclonal antibody). In the present study, we aimed to identify chymase-induced cleavage sites in both lipid-free and lipid-bound (HDL3) forms of apoA-I. Lipid-free apoA-I was preferentially digested by chymase, at the C-terminus rather than the N-terminus. Phe229 and Tyr192 residues were the main cleavage sites. Interestingly, the Phe225 residue was a minor cleavage site. In contrast, the same concentration of chymase failed to digest apoA-I in HDL3; however, a 100-fold higher concentration of chymase modestly digested apoA-I in HDL3 at only the N-terminus, especially at Phe33. CPA (carboxypeptidase A) is another MC protease, co-localized with chymase in severe atherosclerotic lesions. CPA, in vitro, further cleaved C-terminal Phe225 and Phe229 residues newly exposed by chymase, but did not cleave Tyr192. These results indicate that several forms of C-terminally and N-terminally truncated apoA-I could exist in the circulation. They may be useful as new biomarkers to assess the risk of CVD (cardiovascular disease).

2004 ◽  
Vol 36 (6) ◽  
pp. 419-424 ◽  
Author(s):  
Juan Ma ◽  
Xue-Ling Liao ◽  
Bin Lou ◽  
Man-Ping Wu

Abstract High density lipoprotein (HDL) binds lipopolysaccharide (LPS or endotoxin) and neutralizes its toxicity. We investigated the function of Apolipoprotein A-I (ApoA-I), a major apolipoprotein in HDL, in this process. Mouse macrophages were incubated with LPS, LPS+ApoA-I, LPS+ApoA-I+LFF (lipoprotein-free plasma fraction d>1.210 g/ml), LPS+HDL, LPS+HDL+LFF, respectively. MTT method was used to detect the mortality of L-929 cells which were attacked by the release-out cytokines in LPS-activated macrophages. It was found that ApoA-I significantly decreased L-929 cells mortality caused by LPS treatment (LPS vs. LPS+ApoA-I, P<0.05) and this effect became even more significant when LFF was utilized (LPS vs. LPS+ApoA-I+LFF, P<0.01; LPS vs. LPS+HDL+LFF, P<0.01). There was no significant difference between LPS+ApoA-I+LFF and LPS+HDL+LFF treatment, indicating that ApoA-I was the main factor. We also investigated in vivo effects of ApoA-I on mouse mortality rate and survival time after LPS administration. We found that the mortality in LPS+ApoA-I group (20%) and in LPS+ApoA-I+LFF group (10%) was significantly lower than that in LPS group (80%) (P<0.05, P<0.01, respectively); the survival time was (43.20 ± 10.13) h in LPS+ApoA-I group and (46.80 ± 3.79) h in LPS+ApoA-I+LFF group, which were significantly longer than that in LPS group (16.25 ± 17.28) h (P<0.01). We also carried out in vitro binding study to investigate the binding capacity of ApoA-I and ApoA-I+LFF to fluorescence labeled LPS (FITC-LPS). It was shown that both ApoA-I and ApoA-I+LFF could bind with FITC-LPS, however, the binding capacity of ApoA-I+LFF to FITC-LPS (64.47 ± 8.06) was significantly higher than that of ApoA-I alone (24.35 ± 3.70) (P<0.01). The results suggest that: (1) ApoA-I has the ability to bind with and protect against LPS; (2) LFF enhances the effect of ApoA-I; (3) ApoA-I is the major contributor for HDL anti-endotoxin function.


2011 ◽  
Vol 392 (5) ◽  
Author(s):  
Xinbo Zhang ◽  
Baosheng Chen

Abstract It has been shown that apolipoprotein A-V (apoA-V) over-expression significantly lowers plasma triglyceride levels and decreases atherosclerotic lesion development. To assess the feasibility of recombinant high density lipoprotein (rHDL) reconstituted with apoA-V and apolipoprotein A-I (apoA-I) as a therapeutic agent for hyperlipidemic disorder and atherosclerosis, a series of rHDL were synthesized in vitro with various mass ratios of recombinant apoA-I and apoA-V. It is interesting to find that apoA-V of rHDL had no effect on lipoprotein lipase (LPL) activation in vitro and very low density lipoprotein (VLDL) clearance in HepG2 cells and in vivo. By contrast, LPL activation and VLDL clearance were inhibited by the addition of apoA-V to rHDL. Furthermore, the apoA-V of rHDL could not redistribute from rHDL to VLDL after incubation at 37°C for 30 min. These findings suggest that an increase of apoA-V in rHDL could not play a role in VLDL clearance in vitro and in vivo, which could, at least in part, attribute to the lost redistribution of apoA-V from rHDL to VLDL and LPL binding ability of apoA-V in rHDL. The therapeutic application of rHDL reconstituted with apoA-V and apoA-I might need the construction of rHDL from which apoA-V could freely redistribute to VLDL.


2020 ◽  
Vol 167 (5) ◽  
pp. 473-482 ◽  
Author(s):  
Sung-Gun Kim ◽  
Yu-Jen Chen ◽  
Liliana Falzon ◽  
Jean Baum ◽  
Masayori Inouye

Abstract Nascent polypeptides are synthesized on ribosomes starting at the N-terminus and simultaneously begin to fold during translation. We constructed N-terminal fragments of prosubtilisin E containing an intramolecular chaperone (IMC) at N-terminus to mimic cotranslational folding intermediates of prosubtilisin. The IMC-fragments of prosubtilisin exhibited progressive enhancement of their secondary structures and thermostabilities with increasing polypeptide length. However, even the largest IMC-fragment with 72 residues truncated from the C-terminus behaved as a molten globule, indicating the requirement of the C-terminal region to have a stable tertiary structure. Furthermore, truncation of the IMC in the IMC-fragments resulted in aggregation, suggesting that the IMC plays a crucial role to prevent misfolding and aggregation of cotranslational folding intermediates during translation of prosubtilisin polypeptide.


2006 ◽  
Vol 5 (1) ◽  
pp. 132-139 ◽  
Author(s):  
Monika W. Oli ◽  
Laura F. Cotlin ◽  
April M. Shiflett ◽  
Stephen L. Hajduk

ABSTRACT Trypanosoma brucei brucei is the causative agent of nagana in cattle and can infect a wide range of mammals but is unable to infect humans because it is susceptible to the innate cytotoxic activity of normal human serum. A minor subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I (apoA-I), apolipoprotein L-I (apoL-I), and haptoglobin-related protein (Hpr) provides this innate protection against T. b. brucei infection. This HDL subfraction, called trypanosome lytic factor (TLF), kills T. b. brucei following receptor binding, endocytosis, and lysosomal localization. Trypanosoma brucei rhodesiense, which is morphologically and physiologically indistinguishable from T. b. brucei, is resistant to TLF-mediated killing and causes human African sleeping sickness. Human infectivity by T. b. rhodesiense correlates with the evolution of a resistance-associated protein (SRA) that is able to ablate TLF killing. To examine the mechanism of TLF resistance, we transfected T. b. brucei with an epitope-tagged SRA gene. Transfected T. b. brucei expressed SRA mRNA at levels comparable to those in T. b. rhodesiense and was highly resistant to TLF. In the SRA-transfected cells, intracellular trafficking of TLF was altered, with TLF being mainly localized to a subset of SRA-containing cytoplasmic vesicles but not to the lysosome. These results indicate that the cellular distribution of TLF is influenced by SRA expression and may directly determine the organism's susceptibility to TLF.


2008 ◽  
Vol 40 (4) ◽  
pp. 185-198 ◽  
Author(s):  
Sébastien Legardinier ◽  
Jean-Claude Poirier ◽  
Danièle Klett ◽  
Yves Combarnous ◽  
Claire Cahoreau

Recombinant equine LH/chorionic gonadotropin (eLH/CG) was expressed in the baculovirus–Sf9 insect cell system either as a single-chain with the C-terminus of the β-subunit fused to the N-terminus of the α-subunit or as non-covalently linked heterodimers with or without a polyhistidine tag at various locations. All these non-covalently linked eLH/CG variants were secreted as stable heterodimers in the medium of infected Sf9 cells. To assess the influence of the presence and the position of polyhistidine tag on LH bioactivity, we expressed four non-covalently linked tagged heterodimeric eLH/CG variants that were secreted in threefold higher quantities than the single chain. Among them, only two exhibited full in vitro LH bioactivity, relative to untagged heterodimers, namely the one His-tagged at the N-terminus of α-subunit and the other at the C-terminus of the β-subunit both of which are amenable to nickel-affinity purification. Furthermore, single-chain eLH/CG was found to be N- and O-glycosylated but nevertheless less active in in vitro LH bioassays than natural eCG and heterodimeric recombinant eLH/CG. The thermal stability of natural and recombinant hormones was assessed by the initial rates of dissociation from 20 to 90 °C. Heterodimeric eLH/CG from Sf9 cells was found to be as stable as pituitary eLH and serum eCG (T1/2, 74–77 °C). Although Sf9 cells only elaborated short immature-type carbohydrate side chains on glycoproteins, recombinant eLH/CG produced in these cells exhibited stabilities similar to that of pituitary eLH. In conclusion, recombinant heterodimeric eLH/CG exhibits the same thermal stability as natural pituitary LH and its advantages over the single-chain eLH/CG include higher secretion, higher in vitro bioactivity, and reduced potential risk of immunogenicity.


2000 ◽  
Vol 345 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Anita GOYAL ◽  
Janendra K. BATRA

Chimaeric toxins have considerable therapeutic potential to treat various malignancies. We have previously used the fungal ribonucleolytic toxin restrictocin to make chimaeric toxins in which the ligand was fused at either the N-terminus or the C-terminus of the toxin. Chimaeric toxins containing ligand at the C-terminus of restrictocin were shown to be more active than those having ligand at the N-terminus of the toxin. Here we describe the further engineering of restrictocin-based chimaeric toxins, anti-TFR(scFv)-restrictocin and restrictocin-anti-TFR(scFv), containing restrictocin and a single chain fragment variable (scFv) of a monoclonal antibody directed at the human transferrin receptor (TFR), to enhance their cell-killing activity. To promote the independent folding of the two proteins in the chimaeric toxin, a linear flexible peptide, Gly-Gly-Gly-Gly-Ser, was inserted between the toxin and the ligand to generate restrictocin-linker-anti-TFR(scFv) and anti-TFR(scFv)-linker-restrictocin. A 12-residue spacer, Thr-Arg-His-Arg-Gln-Pro-Arg-Gly-Trp-Glu-Gln-Leu, containing the recognition site for the protease furin, was incorporated between the toxin and the ligand to generate restrictocin-spacer-anti-TFR(scFv) and anti-TFR(scFv)-spacer-restrictocin. The incorporation of the proteolytically cleavable spacer enhanced the cell-killing activity of both constructs by 2-30-fold depending on the target cell line. However, the introduction of linker improved the cytotoxic activity only for anti-TFR(scFv)-linker-restrictocin. The proteolytically cleavable spacer-containing chimaeric toxins had similar cytotoxic activities irrespective of the location of the ligand on the toxin and they were found to release the restrictocin fragment efficiently on proteolysis in vitro.


2000 ◽  
Vol 182 (3) ◽  
pp. 637-646 ◽  
Author(s):  
Sabine Enz ◽  
Susanne Mahren ◽  
Uwe H. Stroeher ◽  
Volkmar Braun

ABSTRACT In Escherichia coli, transcription of the ferric citrate transport genes fecABCDE is controlled by a novel signal transduction mechanism that starts at the cell surface. Binding of ferric citrate to the outer membrane protein FecA initiates a signal that is transmitted by FecR across the cytoplasmic membrane into the cytoplasm where FecI, the sigma factor, is activated. Interaction between the signaling proteins was demonstrated by utilizing two methods. In in vitro binding assays, FecR that was His tagged at the N terminus [(His)10-FecR] and bound to a Ni-nitrilotriacetic acid agarose column was able to retain FecA, and FecR that was His tagged at the C terminus [FecR-(His)6] retained FecI on the column. An N-terminally truncated, induction-negative but transport-active FecA protein did not bind to (His)10-FecR. The in vivo assay involved the determination of the FecA, FecR, and FecI interacting domains with the bacterial two-hybrid Lex-based system. FecA1–79 interacts with FecR101–317 and FecR1–85 interacts with FecI1–173. These data clearly support a model that proposes interaction of the periplasmic N terminus of FecA with the periplasmic C-terminal portion of FecR and interaction of the cytoplasmic N terminus of FecR with FecI, which results in FecI activation.


2004 ◽  
Vol 78 (2) ◽  
pp. 700-709 ◽  
Author(s):  
Wenyan Wang ◽  
Frederick C. Lahser ◽  
MinKyung Yi ◽  
Jacquelyn Wright-Minogue ◽  
Ellen Xia ◽  
...  

ABSTRACT Inspection of over 250 hepatitis C virus (HCV) genome sequences shows that a threonine is strictly conserved at the P1 position in the NS3-NS4A (NS3-4A) autoproteolysis junction, while a cysteine is maintained as the P1 residue in all of the putative trans cleavage sites (NS4A-4B, NS4B-5A, and NS5A-5B). To understand why T631 is conserved at the NS3-4A junction of HCV, a series of in vitro transcription-translation studies were carried out using wild-type and mutant (T631C) NS3-4A constructs bearing native, truncated, and mutant NS4A segments. The autocleavage of the wild-type junction was found to be dependent on the presence of the central cofactor domain of NS4A (residues 21 to 34). In contrast, all NS3-4A T631C mutant proteins underwent self-cleavage even in the absence of the cofactor. Subgenomic replicons derived from the Con1 strain of HCV and bearing the T631C mutation showed reduced levels of colony formation in transfection studies. Similarly, replicons derived from a second genotype 1b virus, HCV-N, demonstrated a comparable reduction in replication efficiency in transient-transfection assays. These data suggest that the threonine is conserved at position 631 because it serves two functions: (i) to slow processing at the NS3-4A cleavage site, ensuring proper intercalation of the NS4A cofactor with NS3 prior to polyprotein scission, and (ii) to prevent subsequent product inhibition by the NS3 C terminus.


1999 ◽  
Vol 10 (7) ◽  
pp. 2425-2440 ◽  
Author(s):  
Cunle Wu ◽  
Ekkehard Leberer ◽  
David Y. Thomas ◽  
Malcolm Whiteway

The Saccharomyces cerevisiae Ste11p protein kinase is a homologue of mammalian MAPK/extracellular signal-regulated protein kinase kinase kinases (MAPKKKs or MEKKs) as well as theSchizosaccharomyces pombe Byr2p kinase. Ste11p functions in several signaling pathways, including those for mating pheromone response and osmotic stress response. The Ste11p kinase has an N-terminal domain that interacts with other signaling molecules to regulate Ste11p function and direct its activity in these pathways. One of the Ste11p regulators is Ste50p, and Ste11p and Ste50p associate through their respective N-terminal domains. This interaction relieves a negative activity of the Ste11p N terminus, and removal of this negative function is required for Ste11p function in the high-osmolarity glycerol (HOG) pathway. The Ste50p/Ste11p interaction is also important (but not essential) for Ste11p function in the mating pathway; in this pathway binding of the Ste11p N terminus with both Ste50p and Ste5p is required, with the Ste5p association playing the major role in Ste11p function. In vitro, Ste50p disrupts an association between the catalytic C terminus and the regulatory N terminus of Ste11p. In addition, Ste50p appears to modulate Ste11p autophosphorylation and is itself a substrate of the Ste11p kinase. Therefore, both in vivo and in vitro data support a role for Ste50p in the regulation of Ste11p activity.


2002 ◽  
Vol 366 (3) ◽  
pp. 863-872 ◽  
Author(s):  
Bouchaib BAHBOUHI ◽  
Nathalie CHAZAL ◽  
Nabil Georges SEIDAH ◽  
Cristina CHIVA ◽  
Marcelo KOGAN ◽  
...  

The aim of the present study was to evaluate the capacity of synthetic l- and d-peptides encompassing the HIV-1BRU gp160 REKR cleavage site to interfere with HIV and simian immuno-deficiency virus (SIV) replication and maturation of the envelope glycoprotein (Env) precursors. To facilitate their penetration into cells, a decanoyl (dec) group was added at the N-terminus. The sequences synthesized included dec5d or dec5l (decREKRV), dec9d or dec9l (decRVVQREKRV) and dec14d or dec14l (TKAKRRVVQREKRV). The peptide dec14d was also prepared with a chloromethane (cmk) group as C-terminus. Because l-peptides exhibit significant cytotoxicity starting at 35μM, further characterization was conducted mostly with d-peptides, which exhibited no cytotoxicity at concentrations higher than 70μM. The data show that only dec14d and dec14dcmk could inhibit HIV-1BRU, HIV-2ROD and SIVmac251 replication and their syncytium-inducing capacities. Whereas peptides dec5d and dec9d were inactive, dec14dcmk was at least twice as active as peptide dec14d. At the molecular level, our data show a direct correlation between anti-viral activity and the ability of the peptides to interfere with maturation of the Env precursors. Furthermore, we show that when tested in vitro the dec14d peptide inhibited PC7 with an inhibition constant Ki = 4.6μM, whereas the peptide dec14l preferentially inhibited furin with a Ki = 28μM. The fact that PC7 and furin are the major prohormone convertases reported to be expressed in T4 lymphocytes, the principal cell targets of HIV, suggests that they are involved in the maturation of HIV and SIV Env precursors.


Sign in / Sign up

Export Citation Format

Share Document