scholarly journals Knockdown of TUG1 rescues cardiomyocyte hypertrophy through targeting the miR-497/MEF2C axis

2021 ◽  
Vol 16 (1) ◽  
pp. 242-251
Author(s):  
Guorong Zhang ◽  
Xinghua Ni

Abstract The aim of this study was to investigate the detailed role and molecular mechanism of long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in cardiac hypertrophy. Cardiac hypertrophy was established by transverse abdominal aortic constriction (TAC) in vivo or angiotensin II (Ang II) treatment in vitro. Levels of lncRNA TUG1, miR-497 and myocyte enhancer factor 2C (MEF2C) mRNA were assessed by quantitative reverse transcriptase PCR (qRT-PCR). Western blot assay was performed to determine the expression of MEF2C protein. The endogenous interactions among TUG1, miR-497 and MEF2C were confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. Our data indicated that TUG1 was upregulated and miR-497 was downregulated in the TAC rat model and Ang II-induced cardiomyocytes. TUG1 knockdown or miR-497 overexpression alleviated the hypertrophy induced by Ang II in cardiomyocytes. Moreover, TUG1 acted as a sponge of miR-497, and MEF2C was directly targeted and repressed by miR-497. miR-497 overexpression mediated the protective role of TUG1 knockdown in Ang II-induced cardiomyocyte hypertrophy. MEF2C was a functional target of miR-497 in regulating Ang II-induced cardiomyocyte hypertrophy. In addition, TUG1 regulated MEF2C expression through sponging miR-497. Knockdown of TUG1 rescued Ang II-induced hypertrophy in cardiomyocytes at least partly through targeting the miR-497/MEF2C axis, highlighting a novel promising therapeutic target for cardiac hypertrophy treatment.

Author(s):  
Zhibin Liao ◽  
Hongwei Zhang ◽  
Chen Su ◽  
Furong Liu ◽  
Yachong Liu ◽  
...  

Abstract Background Aberrant expressions of long noncoding RNAs (lncRNAs) have been demonstrated to be related to the progress of HCC. The mechanisms that SNHG14 has participated in the development of HCC are obscure. Methods Quantitative real-time PCR (qRT-PCR) was used to measure the lncRNA, microRNA and mRNA expression level. Cell migration, invasion and proliferation ability were evaluated by transwell and CCK8 assays. The ceRNA regulatory mechanism of SNHG14 was evaluated by RNA immunoprecipitation (RIP) and dual luciferase reporter assay. Tumorigenesis mouse model was used to explore the roles of miR-876-5p in vivo. The protein levels of SSR2 were measured by western blot assay. Results In this study, we demonstrated that SNHG14 was highly expressed in HCC tissues, meanwhile, the elevated expression of SNHG14 predicted poor prognosis in patients with HCC. SNHG14 promoted proliferation and metastasis of HCC cells. We further revealed that SNHG14 functioned as a competing endogenous RNA (ceRNA) for miR-876-5p and that SSR2 was a downstream target of miR-876-5p in HCC. Transwell, CCK8 and animal experiments exhibited miR-876-5p inhibited HCC progression in vitro and in vivo. By conducting rescue experiments, we found the overexpression of SSR2 or knocking down the level of miR-876-5p could reverse the suppressive roles of SNHG14 depletion in HCC. Conclusion SNHG14 promotes HCC progress by acting as a sponge of miR-876-5p to regulate the expression of SSR2 in HCC.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lei Wang ◽  
Dongze Qin ◽  
Hongtao Shi ◽  
Yanan Zhang ◽  
Hao Li ◽  
...  

Cardiac hypertrophy mainly predicts heart failure and is highly linked with sudden loss of lives. MicroRNAs (miRNAs) play essential roles in the development of cardiac hypertrophy through binding to corresponding mRNA targets. In this study, in order to investigate the roles of two mature forms of miRNA-195, miR-195-3p, and miR-195-5p, in vitro and in vivo models of cardiac hypertrophy were established by applying angiotensin II (Ang II) to H9c2 cardiomyocytes and infusing chronic Ang II to mice, respectively. We found that miR-195-5p was evidently equally upregulated in the in vitro and in vivo studies of cardiac hypertrophy induced by Ang II. High expressed miR-195-5p could adequately promote hypertrophy, whereas the suppression of miR-195-5p prevented hypertrophy of H9c2 cardiomyocytes under Ang II treatment. Furthermore, the luciferase reporter system demonstrated that MFN2 and FBWX7 were target genes of miR-195-5p, which negatively regulated the expression of these two genes in H9c2 cells. By contrast, in both models, expression of miR-195-3p was only slightly changed without statistical significance. In addition, we observed a trend towards decreased expression of hypertrophic markers by overexpressing miR-195-3p in AngII-treated H9c2 cardiomyocytes in vitro. Taken together, our study indicates that miR-195-5p promotes cardiac hypertrophy via targeting MFN2 and FBXW7 and may provide promising therapeutic strategies for interfering cardiac hypertrophy.


Author(s):  
Yipei Jing ◽  
Xueke Jiang ◽  
Li Lei ◽  
Meixi Peng ◽  
Jun Ren ◽  
...  

Abstract Background Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1), which displays a distinct long noncoding RNA (lncRNA) expression profile, has been defined as a unique subgroup in the new classification of myeloid neoplasms. However, the biological roles of key lncRNAs in the development of NPM1-mutated AML are currently unclear. Here, we aimed to investigate the functional and mechanistic roles of the lncRNA HOTAIRM1 in NPM1-mutated AML. Methods The expression of HOTAIRM1 was analyzed with a public database and further determined by qRT-PCR in NPM1-mutated AML samples and cell lines. The cause of upregulated HOTAIRM1 expression was investigated by luciferase reporter, chromatin immunoprecipitation and ubiquitination assays. The functional role of HOTAIRM1 in autophagy and proliferation was evaluated using western blot analysis, immunofluorescence staining, a Cell Counting Kit-8 (CCK-8) assay, a 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay, flow cytometric analyses and animal studies. The action mechanism of HOTAIRM1 was explored through RNA fluorescence in situ hybridization, RNA pulldown and RNA immunoprecipitation assays. Results HOTAIRM1 was highly expressed in NPM1-mutated AML. High HOTAIRM1 expression was induced in part by mutant NPM1 via KLF5-dependent transcriptional regulation. Importantly, HOTAIRM1 promoted autophagy and proliferation both in vitro and in vivo. Mechanistic investigations demonstrated that nuclear HOTAIRM1 promoted EGR1 degradation by serving as a scaffold to facilitate MDM2-EGR1 complex formation, while cytoplasmic HOTAIRM1 acted as a sponge for miR-152-3p to increase ULK3 expression. Conclusions Taken together, our findings identify two oncogenic regulatory axes in NPM1-mutated AML centered on HOTAIRM1: one involving EGR1 and MDM2 in the nucleus and the other involving the miR-152-3p/ULK3 axis in the cytoplasm. Our study indicates that HOTAIRM1 may be a promising therapeutic target for this distinct leukemia subtype.


2017 ◽  
Vol 41 (5) ◽  
pp. 2004-2015 ◽  
Author(s):  
Zeng-xiang Dong ◽  
Lin Wan ◽  
Ren-jun Wang ◽  
Yuan-qi Shi ◽  
Guang-zhong Liu ◽  
...  

Background/Aims: Flavonol (–)-epicatechin (EPI) is present in high amounts in cocoa and tea products, and has been shown to exert beneficial effects on the cardiovascular system. However, the precise mechanism of EPI on cardiomyocyte hypertrophy has not yet been determined. In this study, we examined whether EPI could inhibit cardiac hypertrophy. Methods: We utilised cultured neonatal mouse cardiomyocytes and mice for immunofluorescence, immunochemistry, qRT-PCR, and western blot analyses. Results: 1µM EPI significantly inhibited 1µM angiotensin II (Ang II)-induced increase of cardiomyocyte size, as well as the mRNA and protein levels of ANP, BNP and β-MHC in vitro. The effects of EPI were accompanied with an up-regulation of SP1 and SIRT1, and were abolished by SP1 inhibition. Up-regulation of SP1 could block Ang II-induced increase in cardiomyocyte size, as well as the mRNA and protein levels of ANP, BNP and β-MHC, and increase the protein levels of SIRT1 in vitro. Moreover, 1 mg/kg body weight/day EPI significantly inhibited mouse cardiac hypertrophy induced by Ang II, which could be eliminated by SP1 inhibition in vivo. Conclusion: Our data indicated that EPI inhibited AngII-induced cardiac hypertrophy by activating the SP1/SIRT1 signaling pathway.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Huan-yu Zhang ◽  
Mao-qing Xing ◽  
Jing Guo ◽  
Jin-chuan Zhao ◽  
Xin Chen ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) play essential roles in tumor progression. However, the functions and targets of lncRNAs in neuroblastoma (NB) progression still remain to be determined. In this study, we aimed to investigate the effect of lncRNA DLX6 antisense RNA 1 (DLX6-AS1) on NB and the underlying mechanism involved. Methods Through mining of public microarray datasets, we identify aberrantly expressed lncRNAs in NB. The gene expression levels were determined by quantitative real-time PCR, and protein expression levels were determined by western blot assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, wound-healing assay, transwell invasion assays and flow cytometry analysis were utilized to examine cell proliferation, migration, invasion and apoptosis. Luciferase reporter assay was performed to confirm the interaction between DLX6-AS1and its potential targets. Tumor xenograft assay was used to verify the role of DLX6-AS1 in NB in vivo. Results We identified DLX6-AS1 was upregulated in NB by using a public microarray dataset. The expression of DLX6-AS1 was increased in NB tissues and derived cell lines, and high expression of DLX6-AS1 was positively correlated with advanced TNM stage and poor differentiation. Knockdown of DLX6-AS1 induced neuronal differentiation, apoptosis and inhibited the growth, invasion, and metastasis of NB cells in vitro and impaired tumor growth in vivo. MiR-107 was the downstream target of DLX6-AS1. MiR-107 was found to target brain‐derived neurotrophic factor (BDNF) which is an oncogene in NB. Knockdown of miR-107 or overexpression of BDNF reversed the suppression of NB progression caused by DLX6-AS1 silence. Conclusion Overall, our finding supports that DLX6-AS1 promotes NB progression by regulating miR-107/BDNF pathway, acting as a novel therapeutic target for NB.


2020 ◽  
Author(s):  
Jun Liu ◽  
Wenshuai Zhu ◽  
Jianqin Ji

Abstract Background Osteosarcoma (OS) is a common aggressive primary sarcoma of bone. Drug resistance is a huge obstacle to chemotherapy for cancer. This study aimed to investigate the role and mechanism of circ_0002060 in OS resistance to doxorubicin (DOX). Methods The levels of circ_0002060, miR-198 and ATP binding cassette subfamily B member 1 (ABCB1) were measured by quantitative real-time polymerase chain reaction or western blot assay. Kaplan-Meier analysis was performed to determine the relationship between circ_0002060 expression and overall survival. The half inhibition concentration (IC50) of doxorubicin was calculated by Cell Counting Kit-8 (CCK-8) assay. Cell proliferation was assessed by colony formation assay. Cell apoptosis was monitored by flow cytometry. The levels of apoptosis-related proteins were measured by western blot assay. Xenograft assay was utilized to analyze the effect of circ_0002060 on DOX resistance in vivo . The interaction among circ_0002060, miR-198 and ABCB1 were confirmed by dual-luciferase reporter assay, RNA immunoprecipitation assay or RNA pull-down assay. Results Circ_0002060 and ABCB1 were up-regulated, while miR-198 was down-regulated in OS tissues and DOX-resistant OS cells. Circ_0002060 silence reduced DOX resistance in vitro and in vivo . Moreover, circ_0002060 enhanced DOX resistance via sponging miR-198. Besides, miR-198 decreased DOX resistance by binding to ABCB1. In addition, circ_0002060 sponged miR-198 to up-regulate ABCB1 expression. Conclusion Circ_0002060 enhanced doxorubicin resistance of OS by regulating miR-198/ABCB1 axis, which provides potential therapeutic targets for OS therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Yu ◽  
Huanhuan Zhao ◽  
Xin Qi ◽  
Liping Wei ◽  
Zihao Li ◽  
...  

Objective: The purpose of this study was to investigate the effect of dapagliflozin (DAPA), a sodium-glucose cotransporter 2 inhibitor, on relieving cardiac hypertrophy and its potential molecular mechanism.Methods: Cardiac hypertrophy induced by abdominal aortic constriction (AAC) in mice, dapagliflozin were administered in the drinking water at a dose of 25 mg/kg/d for 12 weeks was observed. Echocardiography was used to detect the changes of cardiac function, including LVEF, LVFS, LVEDd, LVEDs, HR and LV mass. Histological morphological changes were evaluated by Masson trichrome staining and wheat germ agglutinin (WGA) staining. The enrichment of differential genes and signal pathways after treatment was analyzed by gene microarray cardiomyocyte hypertrophy was induced by AngII (2 μM) and the protective effect of dapagliflozin (1 μM) was observed in vitro. The morphological changes of myocardial cells were detected by cTnI immunofluorescence staining. ELISA and qRT-PCR assays were performed to detect the expressions levels of cardiac hypertrophy related molecules.Results: After 12 weeks of treatment, DAPA significantly ameliorated cardiac function and inhibited cardiac hypertrophy in AAC-induced mice. In vitro, DAPA significantly inhibited abnormal hypertrophy in AngII-induced cardiacmyocytes. Both in vivo and in vitro experiments have confirmed that DAPA could mediate the Plin5/PPARα signaling axis to play a protective role in inhibiting cardiac hypertrophy.Conclusion: Dapagliflozin activated the Plin5/PPARα signaling axis and exerts a protective effect against cardiac hypertrophy.


2020 ◽  
Author(s):  
Zengxi Yang ◽  
Xi OuYang ◽  
Liang Zheng ◽  
Lizhen Dai ◽  
Wenjuan Luo

Abstract Background:The expression levels and detailed functions of LINC00265 in gastric cancer (GC) have not yet been explored. This study aimed to measure LINC00265 expression in GC tissues and cell lines, investigate its specific roles in the aggressive characteristics of GC cells in vitro and in vivo, and elucidate the regulatory mechanisms of LINC00265 action.Materials and methods: The qRT-PCR was performed to test the RNA expression levels in GC tissues and cell lines. Cell proliferation was detected by CCK-8 and colony formation assays. Western blot assay was used to measure relevant protein expression. Luciferase reporter assays were performed to investigate the association between LINC00265 and microRNA-144-3p and CBX4.Results: LINC00265 expression was high in GC tissue samples and cell lines; LINC00265 overexpression correlated with shorter overall survival of the patients. A LINC00265 knockdown inhibited GC cell proliferation in vitro and slowed tumor growth in vivo. Mechanism investigation revealed that LINC00265 acts as a competing endogenous RNA on microRNA-144-3p (miR- 144) in GC cells. Chromobox 4 (CBX4) mRNA was identified as a direct target of miR-144-3p in GC cells. The knockdown of miR-144-3p counteracted the reduction in the malignant characteristics of GC cells by the downregulation of LINC00265.Conclusion: In conclusion, LINC00265 functions as a competing endogenous RNA targeting miR-144-3p and increases the malignancy of GC cells in vitro and in vivo by upregulating CBX4.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Yunlong Bai ◽  
Xi Sun ◽  
Qun Chu ◽  
Anqi Li ◽  
Ying Qin ◽  
...  

Cardiac hypertrophy is a compensatory response to stress or stimuli, which results in arrhythmia and heart failure. Although multiple molecular mechanisms have been identified, cardiac hypertrophy is still difficult to treat. Pyroptosis is a caspase-1-dependent pro-inflammatory programmed cell death. Caspase-1 is involved in various types of diseases, including hepatic injury, cancers, and diabetes-related complications. However, the exact role of caspase-1 in cardiac hypertrophy is yet to be discovered. The present study aimed to explore the possible role of caspase-1 in pathogenesis of cardiac hypertrophy. We established cardiac hypertrophy models both in vivo and in vitro to detect the expression of caspase-1 and interleukin-1β (IL-1β). The results showed that caspase-1 and IL-1β expression levels were significantly up-regulated during cardiac hypertrophy. Subsequently, caspase-1 inhibitor was co-administered with angiotensin II (Ang II) in cardiomyocytes to observe whether it could attenuate cardiac hypertrophy. Results showed that caspase-1 attenuated the pro-hypertrophic effect of Ang II, which was related to the down-regulation of caspase-1 and IL-1β. In conclusion, our results provide a novel evidence that caspase-1 mediated pyroptosis is involved in cardiac hypertrophy, and the inhibition of caspase-1 will offer a therapeutic potential against cardiac hypertrophy.


2019 ◽  
Vol 116 (7) ◽  
pp. 1323-1334 ◽  
Author(s):  
Hui Li ◽  
Jin-Dong Xu ◽  
Xian-Hong Fang ◽  
Jie-Ning Zhu ◽  
Jing Yang ◽  
...  

Abstract Aims Circular RNAs (circRNAs) are involved in gene regulation in a variety of physiological and pathological processes. The present study aimed to investigate the effect of circRNA_000203 on cardiac hypertrophy and the potential mechanisms involved. Methods and results CircRNA_000203 was found to be up-regulated in the myocardium of Ang-II-infused mice and in the cytoplasma of Ang-II-treated neonatal mouse ventricular cardiomyocytes (NMVCs). Enforced expression of circRNA_000203 enhances cell size and expression of atrial natriuretic peptide and β-myosin heavy chain in NMVCs. In vivo, heart function was impaired and cardiac hypertrophy was aggravated in Ang-II-infused myocardium-specific circRNA_000203 transgenic mice (Tg-circ203). Mechanistically, we found that circRNA_000203 could specifically sponge miR-26b-5p, -140-3p in NMVCs. Further, dual-luciferase reporter assay showed that miR-26b-5p, -140-3p could interact with 3′-UTRs of Gata4 gene, and circRNA_000203 could block the above interactions. In addition, Gata4 expression is transcriptionally inhibited by miR-26b-5p, -140-3p mimic in NMVCs but enhanced by over-expression of circRNA_000203 in vitro and in vivo. Functionally, miR-26b-5p, -140-3p, and Gata4 siRNA, could reverse the hypertrophic growth in Ang-II-induced NMVCs, as well as eliminate the pro-hypertrophic effect of circRNA_000203 in NMVCs. Furthermore, we demonstrated that NF-κB signalling mediates the up-regulation of circRNA_000203 in NMVCs exposed to Ang-II treatment. Conclusions Our data demonstrated that circRNA_000203 exacerbates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p leading to enhanced Gata4 levels.


Sign in / Sign up

Export Citation Format

Share Document